Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (06): 1344-1350    DOI: 10.3866/PKU.WHXB201303263
Hydrothermal Synthesis and Photocatalytic Activity of Partially Reduced Graphene Oxide/TiO2 Composite
LONG Mei, CONG Ye, LI Xuan-Ke, CUI Zheng-Wei, DONG Zhi-Jun, YUAN Guan-Ming
Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, Hubei 430081, P. R. China
Download:   PDF(2069KB) Export: BibTeX | EndNote (RIS)      


Partially reduced graphene oxide/titanium dioxide (RGO/TiO2) composite was synthesized using tetrabutyl titanate and graphite oxide by a hydrothermal method. Photocatalytic activity of the material was evaluated by the degradation of methylene blue solution under visible light and UV light. The results suggest that the crystal phase and dispersion of titanium oxide in the composite can be controlled by varying the reaction temperature and amount of graphite oxide. Graphene oxide was partially reduced in the hydrothermal reaction process. Photocatalytic activities of partially reduced graphene oxide/titanium dioxide composites under both visible and UV light irradiation were higher than those of pure TiO2. Partially reduced graphene oxide may act as a support and electron acceptor, and can also extend and enhance the band edge absorption of TiO2 into the visible light region, hence effectively enhancing the adsorbability and photocatalytic activity of TiO2.

Key wordsHydrothermal      Partially reduced graphene oxide      Titanium dioxide      Photocatalysis      Support     
Received: 09 January 2013      Published: 26 March 2013
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (20803054, 50972110).

Cite this article:

LONG Mei, CONG Ye, LI Xuan-Ke, CUI Zheng-Wei, DONG Zhi-Jun, YUAN Guan-Ming. Hydrothermal Synthesis and Photocatalytic Activity of Partially Reduced Graphene Oxide/TiO2 Composite. Acta Phys. Chim. Sin., 2013, 29(06): 1344-1350.

URL:     OR

(1) Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877
(2) Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110,132. doi: 10.1021/cr900070d
(3) Zhang, H. B.; Zheng,W. G.; Yan, Q.; Yang, Y.;Wang, J.W.; Lu,Z. H.; Ji, G. Y.; Yu, Z. Z. Polymer 2010, 51, 1191. doi: 10.1016/j.polymer.2010.01.027
(4) Wan, C.; Peng, T. J.; Sun, H. J.; Huang, Q. Chin. J. Inorg. Chem. 2012, 28 (5), 915. [万臣, 彭同江, 孙红娟, 黄桥.无机化学学报, 2012, 28 (5), 915.]
(5) Chen, D.; Feng, H. B.; Li, J. H. Chem. Rev. 2012, 112, 6027.doi: 10.1021/cr300115g
(6) Zhang, X. Y.; Sun, M. X.; Sun, Y. J.; Li, J.; Song, P.; Sun, T.;Cui, X. L. Acta Phys. -Chim. Sin. 2011, 27, 2831. [张晓艳,孙明轩, 孙钰珺, 李靖, 宋鹏, 孙通, 崔晓莉. 物理化学学报, 2011, 27, 2831.] doi: 10.3866/PKU.WHXB20112831
(7) Zhang, X.; Yang, R.;Wang, C.; Heng, C. L. Acta Phys. -Chim. Sin. 2012, 28, 1520. [张晓, 杨蓉, 王琛, 衡成林. 物理化学学报, 2012, 28, 1520.] doi: 10.3866/PKU.WHXB201203131
(8) Xu, Z. X.; Du, Y. J.; Jiao, Y. P.; Feng,W. Journal of Anhui University (Natural Science Edition) 2012, 36 (5), 73.[许志献, 杜燕军, 焦延鹏, 冯伟. 安徽大学学报(自然科学版), 2012, 36( 5), 73.]
(9) Fan,W. Q.; Lai, Q. H.; Zhang, Q. H.;Wang, Y. J. Phys. Chem. C 2011, 115, 10694. doi: 10.1021/jp2008804
(10) Cong, Y.; Zhang, J. L.; Chen, F.; Anpo, M. J. Phys. Chem. C2007, 111, 6976. doi: 10.1021/jp0685030
(11) Zhang, X.; Liu, Q. Appl. Surf. Sci. 2008, 254, 4780.doi: 10.1016/j.apsusc.2008.01.094
(12) Xing, M. Y.; Fang,W. Z.; Nasir, M.; Ma, Y. F.; Zhang, J. L.;Anpo, M. Journal of Catalysis 2013, 297, 236. doi: 10.1016/j.jcat.2012.10.014
(13) Zhang, X. Y.; Li, H. P.; Cui, X. L. Chin. J. Inorg. Chem. 2009,25, 1903. [张晓艳, 李浩鹏, 崔晓莉. 无机化学学报, 2009,25, 1903.]
(14) Cong, Y.; Li, X. K.; Qin, Y.; Dong, Z. J.; Yuan, G. M.; Cui, Z.W.; Lai, X. J. Appl. Catal. B 2011, 107, 128. doi: 10.1016/j.apcatb.2011.07.005
(15) Rincón, M. E.; Trujillo-Camacho, M. E.; Cuentas-Gallegos, A.K. Catal. Today 2005, 107-108, 606.
(16) Soldano, C.; Mahmood, A.; Dujardin, E. Carbon 2010, 48,2127. doi: 10.1016/j.carbon.2010.01.058
(17) Cong, Y.; Qin, Y.; Li, X. K.; Dong, Z. J.; Yuan, G. M.; Cui, Z.W. Acta Phys. -Chim. Sin. 2011, 27, 1509. [丛野, 秦云,李轩科, 董志军, 袁观明, 崔正威. 物理化学学报, 2011, 27,1509.] doi: 10.3866/PKU.WHXB201203272
(18) Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Chem. Soc. Rev. 2012, 41,782.
(19) Jiang, G. D.; Lin, Z. F.; Chen, C.; Zhu, L. H.; Chang, Q.;Wang,N.;Wei,W.; Tang, H. Q. Carbon 2011, 49, 2693. doi: 10.1016/j.carbon.2011.02.059
(20) Min, Y. L.; Zhang, K.; Zhao,W.; Zheng, F. C.; Chen, Y. C.;Zhang, Y. G. Chemical Engineering Journal 2012, 193-194,203.
(21) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
(22) Liu, J.; Bai, H.;Wang, Y.; Liu, Z.; Zhang, X.; Sun, D. D. Adv. Funct. Mater. 2010, 20, 4175. doi: 10.1002/adfm.201001391
(23) Nethravathi, C.; Rajamathi, M. Carbon 2008, 46, 1994.doi: 10.1016/j.carbon.2008.08.013
(24) Zhou, K. F.; Zhu, Y. H.; Yang, X. L.; Jiang, X.; Li, C. Z. New J. Chem. 2011, 35, 353. doi: 10.1039/c0nj00623h
(25) Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.;Guo, S.W. Chem. Commun. 2010, 46, 1112. doi: 10.1039/b917705a
(26) Wang,W. G.; Yu, J. G.; Xiang, Q. J.; Cheng, B. Appl. Catal. B: Environ. 2012, 119-120, 109.
(27) Zhang, L.W.; Fu, H. B.; Zhu, Y. F. Adv. Funct. Mater. 2008, 18,2180. doi: 10.1002/adfm.v18:15
(28) Ma, L. J.; Guo, L. J. Acta Chim. Sin. 2006, 24 (9), 863. [马利静, 郭烈锦. 化学学报, 2006, 24 (9), 863.]
(29) Zhou, Y.; Bao, Q. L.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P.Chem. Mater. 2009, 21, 2950. doi: 10.1021/cm9006603
(30) Yang, Y. H.; Sun, H. J.; Peng, T. J. Chin. J. Inorg. Chem. 2010,26 (11), 2083. [杨勇辉, 孙红娟, 彭同江. 无机化学学报,2010, 26 (11), 2083.
(31) Zhang, X. Y.; Sun, Y. J.; Cui, X. L.; Jiang, Z. Y. Int. J. hydrog. Energy 2012, 37, 811. doi: 10.1016/j.ijhydene.2011.04.053
(32) Lei, Y.; Zhang, L. D.; Fan, J. C. Chem. Phys. Lett. 2001, 338,231. doi: 10.1016/S0009-2614(01)00263-9

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. Chim. Sin., 2018, 34(2): 168-176.
[2] CHEN Fan, WANG Zhong-Yue, ZHANG Yan-Yan, YU Ke-Han, WENG Li-Xing, WEI Wei. Synthesis of Poly(acrylic acid)-Functionalized La1-xEuxF3 Nanocrystals with High Photoluminescence for Cellular Imaging[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1446-1452.
[3] ZHAN Lin-Jun, SUN Xiao-Yan, ZHOU Ying, ZHU Qiu-Lian, CHEN Yin-Fei, Lu Han-Feng. Deactivation Mechanism of CeO2-Based Mixed Oxide Catalysts Supported on SiO2[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1474-1482.
[4] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[5] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[6] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1160-1170.
[7] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Developing a Support Vector Machine Based QSPR Model to PredictGas-to-Benzene Solvation Enthalpy of Organic Compounds[J]. Acta Phys. Chim. Sin., 2017, 33(5): 918-926.
[8] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[9] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. Chim. Sin., 2017, 33(2): 386-392.
[10] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[11] ZHANG Xiao-Ru, XU Yue-Feng, SHEN Shou-Yu, CHEN Yuan, HUANG Ling, LI Jun-Tao, SUN Shi-Gang. Reduced Graphene Oxide-LaFeO3 Composite Nanomaterials as Bifunctional Catalyst for Rechargeable Lithium-Oxygen Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2237-2244.
[12] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[13] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[14] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[15] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.