Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (06): 1266-1272    DOI: 10.3866/PKU.WHXB201304091
Preparation of Pentaethylenehexamine-Functionalized Mesocellular Silica Foams and Their Application for CO2 Adsorption
FENG Xing-Xing, XIE Jing, HU Geng-Shen, JIA Ai-Ping, XIE Guan-Qun, LUO Meng-Fei
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
Download:   PDF(778KB) Export: BibTeX | EndNote (RIS)      


Mesocellular silica foam (MCF) was prepared using P123 (EO20-PO70-EO20) as template and then functionalized with pentaethylenehexamine (PEHA) for CO2 adsorption. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorptiondesorption isotherms, Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA). These results indicated that after modification with PEHA, the structure of the support itself was undamaged. The highest CO2 adsorption capacity of MCF-PEHA was obtained at 75℃. With increasing PEHA loading, the CO2 adsorption capacity increases and approached the highest adsorption capacity (3.55 mmol·g-1) with a 70% (w) PEHA loading. Moisture improved the CO2 adsorption performance of the adsorbents. Repeated adsorption-desorption cycling indicated that the sorbents maintained stable CO2 adsorption capacity after 4 cycles, indicating potential for regeneration of the adsorbents.

Key wordsMesostructure cellar foam      Pentaethylenehexamine      Adsorption      CO2     
Received: 27 December 2012      Published: 09 April 2013
MSC2000:  O647  

The project was supported by the National Natural Science Foundation of China (21203167).

Cite this article:

FENG Xing-Xing, XIE Jing, HU Geng-Shen, JIA Ai-Ping, XIE Guan-Qun, LUO Meng-Fei. Preparation of Pentaethylenehexamine-Functionalized Mesocellular Silica Foams and Their Application for CO2 Adsorption. Acta Phys. -Chim. Sin., 2013, 29(06): 1266-1272.

URL:     OR

(1) Lee, S. S.; Mun, S. M.; Choi,W. J.; Min, B. M.; Cho, S.W.; Oh,K. J. J. Environ. Sci. 2012, 24, 897. doi: 10.1016/S1001-0742(11)60788-2
(2) Zhang, J.; Misch, R.; Tan, Y.; Agar, D.W. Chem. Eng. Technol.2011, 34, 1481. doi: 10.1002/ceat.v34.9
(3) Kemper, J.; Ewert, G.; Grünewald, M. Energy Procedia 2011, 4,232. doi: 10.1016/j.egypro.2011.01.046
(4) Du, M.; Feng, B.; An, H.; Liu,W.; Zhang, L. Korean J. Chem. Eng. 2012, 29, 362. doi: 10.1007/s11814-011-0184-4
(5) Chew, T. L.; Ahmad, L. A.; Bhatia, S. Adv. Colloid Interface Sci.2010, 153, 43. doi: 10.1016/j.cis.2009.12.001
(6) Wang, M.; Yang, D.;Wang, Z.;Wang, J.;Wang, S. Front. Chem. Eng. Chin. 2010, 4, 127. doi: 10.1007/s11705-009-0231-4
(7) Lee, S. C.; Choi, B. Y.; Lee, T. J.; Ryu, C. K.; Ahn, Y. S.; Kim,J. C. Catal. Today 2006, 111, 385. doi: 10.1016/j.cattod.2005.10.051
(8) Choi, S.; Drese, J. H.; Eisenberger, P. M.; Jones, C.W. Environ. Sci. Technol. 2011, 45, 2420. doi: 10.1021/es102797w
(9) Gray, M. L.; Hoffman, J. S.; Hreha, D. C.; Fauth, D. J.; Hedges,S.W.; Champagne, K. J.; Pennline, H.W. Energy Fuels 2009,23, 4840. doi: 10.1021/ef9001204
(10) Hu, G. S.; Zhu, L.; Jia, A. P.; Hu, X.; Lu, J. Q.; Luo, M. F. Appl. Spectrosc. 2012, 66, 122. doi: 10.1366/11-06466
(11) Wei, L.; Lan, R. K.; Jing, Y.; Gao, Z. M.;Wang, Y. D. Chem. Ind. Eng. Prog. 2011, 30, 143. [韦力, 蓝任凯, 靖宇, 高正明, 王运冬. 化工进展, 2011, 30, 143.]
(12) Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W.Energy Fuels 2002, 16, 1463. doi: 10.1021/ef020058u
(13) Ye, Q.; Zhang, Y.; Li, M.; Shi, Y. Acta Phys. -Chin.Sin. 2012, 28,1223. [叶青, 张瑜, 李茗, 施耀. 物理化学学报,2012, 28, 1223.] doi: 10.3866/PKU.WHXB201202234
(14) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2010, 49, 359. doi: 10.1021/ie900837t
(15) Kim, S.; Ida, J.; Guliants, V. V.; Lin, J. Y. S. J. Phys. Chem. B2005, 109, 6287. doi: 10.1021/jp045634x
(16) Wang, L.; Ma, L.;Wang, A.; Liu, Q.; Zhang, T. Chin. J. Catal.2007, 28, 805. doi: 10.1016/S1872-2067(07)60066-7
(17) Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman,R. S.; Zemanian, T. S.; Aardahl, C. L. Ind. Eng. Chem. Res.2005, 44, 3099. doi: 10.1021/ie049488t
(18) Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn,P. Microporous Mesoporous Mat. 2008, 116, 358. doi: 10.1016/j.micromeso.2008.04.023
(19) Knofel, C.; Descarpentries, J.; Benzaouia, A.; Zelenak, V.;Mornet, S.; Llewellyn, P. L.; Hornebecq, V. Microporous Mesoporous Mat. 2007, 99, 79. doi: 10.1016/j.micromeso.2006.09.018
(20) Serna-Guerrero, R.; Belmabkhout, Y.; Sayari, A. Chem. Eng. J.2010, 158, 513. doi: 10.1016/j.cej.2010.01.041
(21) Son,W. J.; Choi, J. S.; Ahn,W. S. Microporous Mesoporous Mat. 2008, 113, 31. doi: 10.1016/j.micromeso.2007.10.049
(22) Ma, X.;Wang, X.; Song, C. J. Am. Chem. Soc. 2009, 131, 5777.doi: 10.1021/ja8074105
(23) Qi, G.;Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A. H.A. Energy Environ. Sci. 2011, 4, 444. doi: 10.1039/c0ee00213e
(24) Zhang, H. D. Mater. Rev. 2009, 23, 93. [张海东. 材料导报,2009, 23, 93.]
(25) Subagyono, D. J. N.; Liang, Z.; Knowles, G. P.; Chaffee, A. L.Chem. Eng. Res. Des. 2011, 89, 1647. doi: 10.1016/j.cherd.2011.02.019
(26) Zou, Z. C.;Wei, Q.; Na,W.; Sun, H.; Nei, Z. R. J. Inorg. Mater.2009, 24, 702. [邹泽昌, 韦奇, 纳薇, 孙慧, 聂祚仁. 无机材料学报, 2009, 24, 702.] doi: 10.3724/SP.J.1077.2009.00702
(27) Yan, X.; Zhang, L.; Zhang, Y.; Qiao, K.; Yan, Z.; Komarneni, S.Chem. Eng. J. 2011, 168, 918. doi: 10.1016/j.cej.2011.01.066
(28) Qi, G.; Fu, L.; Choi, B. H.; Giannelis, E. P. Energy Environ. Sci.2012, 5, 7368. doi: 10.1039/c2ee21394j
(29) Zhao, J.; Simeon, F.;Wang, Y.; Luo, G.; Hatton, T. A. RSC Adv.2012, 2, 6509. doi: 10.1039/c2ra20149f
(30) Feng, X. X.; Hu, G. S.; Hu, X.; Xie, G. Q.; Xie, Y. L.; Lu, J. Q.;Luo, M. F. Ind. Eng. Chem. Res. 2013, 52, 4221. doi: 10.1021/ie301946p
(31) Schmidt-Winkel, P.; Lukens,W.W.; Yang, P.; Margolese, D. I.;Lettow, J. S.; Ying, J. Y.; Stucky, G. D. Chem. Mater. 2000, 12,686. doi: 10.1021/cm991097v
(32) Harlick, P. J. E.; Sayari, A. Ind. Eng. Chem. Res. 2006, 45,3248. doi: 10.1021/ie051286p
(33) Franchi, R. S.; Harlick, P. J. E.; Sayari, A. Ind. Eng. Chem. Res.2005, 44, 8007. doi: 10.1021/ie0504194

[1] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[2] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[3] Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944.
[4] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[5] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[6] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[7] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[8] Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105.
[9] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[10] Yun-Peng GUO,Jie FENG,Wen-Ying LI. Effect of Ni Doping on Electron Transfer in Ni/MgO Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1796-1802.
[11] Liang ZHOU,Xue-Hua ZHANG,Lin LIN,Pan LI,Kun-Juan SHAO,Chun-Zhong LI,Tao HE. Visible-Light Photocatalytic Reduction of CO2 by CoTe Prepared via a Template-Free Hydrothermal Method[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1884-1890.
[12] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[13] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[14] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[15] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.