Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (06): 1266-1272    DOI: 10.3866/PKU.WHXB201304091
Preparation of Pentaethylenehexamine-Functionalized Mesocellular Silica Foams and Their Application for CO2 Adsorption
FENG Xing-Xing, XIE Jing, HU Geng-Shen, JIA Ai-Ping, XIE Guan-Qun, LUO Meng-Fei
Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
Download:   PDF(778KB) Export: BibTeX | EndNote (RIS)      


Mesocellular silica foam (MCF) was prepared using P123 (EO20-PO70-EO20) as template and then functionalized with pentaethylenehexamine (PEHA) for CO2 adsorption. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorptiondesorption isotherms, Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA). These results indicated that after modification with PEHA, the structure of the support itself was undamaged. The highest CO2 adsorption capacity of MCF-PEHA was obtained at 75℃. With increasing PEHA loading, the CO2 adsorption capacity increases and approached the highest adsorption capacity (3.55 mmol·g-1) with a 70% (w) PEHA loading. Moisture improved the CO2 adsorption performance of the adsorbents. Repeated adsorption-desorption cycling indicated that the sorbents maintained stable CO2 adsorption capacity after 4 cycles, indicating potential for regeneration of the adsorbents.

Key wordsMesostructure cellar foam      Pentaethylenehexamine      Adsorption      CO2     
Received: 27 December 2012      Published: 09 April 2013
MSC2000:  O647  

The project was supported by the National Natural Science Foundation of China (21203167).

Cite this article:

FENG Xing-Xing, XIE Jing, HU Geng-Shen, JIA Ai-Ping, XIE Guan-Qun, LUO Meng-Fei. Preparation of Pentaethylenehexamine-Functionalized Mesocellular Silica Foams and Their Application for CO2 Adsorption. Acta Phys. Chim. Sin., 2013, 29(06): 1266-1272.

URL:     OR

(1) Lee, S. S.; Mun, S. M.; Choi,W. J.; Min, B. M.; Cho, S.W.; Oh,K. J. J. Environ. Sci. 2012, 24, 897. doi: 10.1016/S1001-0742(11)60788-2
(2) Zhang, J.; Misch, R.; Tan, Y.; Agar, D.W. Chem. Eng. Technol.2011, 34, 1481. doi: 10.1002/ceat.v34.9
(3) Kemper, J.; Ewert, G.; Grünewald, M. Energy Procedia 2011, 4,232. doi: 10.1016/j.egypro.2011.01.046
(4) Du, M.; Feng, B.; An, H.; Liu,W.; Zhang, L. Korean J. Chem. Eng. 2012, 29, 362. doi: 10.1007/s11814-011-0184-4
(5) Chew, T. L.; Ahmad, L. A.; Bhatia, S. Adv. Colloid Interface Sci.2010, 153, 43. doi: 10.1016/j.cis.2009.12.001
(6) Wang, M.; Yang, D.;Wang, Z.;Wang, J.;Wang, S. Front. Chem. Eng. Chin. 2010, 4, 127. doi: 10.1007/s11705-009-0231-4
(7) Lee, S. C.; Choi, B. Y.; Lee, T. J.; Ryu, C. K.; Ahn, Y. S.; Kim,J. C. Catal. Today 2006, 111, 385. doi: 10.1016/j.cattod.2005.10.051
(8) Choi, S.; Drese, J. H.; Eisenberger, P. M.; Jones, C.W. Environ. Sci. Technol. 2011, 45, 2420. doi: 10.1021/es102797w
(9) Gray, M. L.; Hoffman, J. S.; Hreha, D. C.; Fauth, D. J.; Hedges,S.W.; Champagne, K. J.; Pennline, H.W. Energy Fuels 2009,23, 4840. doi: 10.1021/ef9001204
(10) Hu, G. S.; Zhu, L.; Jia, A. P.; Hu, X.; Lu, J. Q.; Luo, M. F. Appl. Spectrosc. 2012, 66, 122. doi: 10.1366/11-06466
(11) Wei, L.; Lan, R. K.; Jing, Y.; Gao, Z. M.;Wang, Y. D. Chem. Ind. Eng. Prog. 2011, 30, 143. [韦力, 蓝任凯, 靖宇, 高正明, 王运冬. 化工进展, 2011, 30, 143.]
(12) Xu, X.; Song, C.; Andresen, J. M.; Miller, B. G.; Scaroni, A.W.Energy Fuels 2002, 16, 1463. doi: 10.1021/ef020058u
(13) Ye, Q.; Zhang, Y.; Li, M.; Shi, Y. Acta Phys. -Chin.Sin. 2012, 28,1223. [叶青, 张瑜, 李茗, 施耀. 物理化学学报,2012, 28, 1223.] doi: 10.3866/PKU.WHXB201202234
(14) Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2010, 49, 359. doi: 10.1021/ie900837t
(15) Kim, S.; Ida, J.; Guliants, V. V.; Lin, J. Y. S. J. Phys. Chem. B2005, 109, 6287. doi: 10.1021/jp045634x
(16) Wang, L.; Ma, L.;Wang, A.; Liu, Q.; Zhang, T. Chin. J. Catal.2007, 28, 805. doi: 10.1016/S1872-2067(07)60066-7
(17) Zheng, F.; Tran, D. N.; Busche, B. J.; Fryxell, G. E.; Addleman,R. S.; Zemanian, T. S.; Aardahl, C. L. Ind. Eng. Chem. Res.2005, 44, 3099. doi: 10.1021/ie049488t
(18) Zelenak, V.; Halamova, D.; Gaberova, L.; Bloch, E.; Llewellyn,P. Microporous Mesoporous Mat. 2008, 116, 358. doi: 10.1016/j.micromeso.2008.04.023
(19) Knofel, C.; Descarpentries, J.; Benzaouia, A.; Zelenak, V.;Mornet, S.; Llewellyn, P. L.; Hornebecq, V. Microporous Mesoporous Mat. 2007, 99, 79. doi: 10.1016/j.micromeso.2006.09.018
(20) Serna-Guerrero, R.; Belmabkhout, Y.; Sayari, A. Chem. Eng. J.2010, 158, 513. doi: 10.1016/j.cej.2010.01.041
(21) Son,W. J.; Choi, J. S.; Ahn,W. S. Microporous Mesoporous Mat. 2008, 113, 31. doi: 10.1016/j.micromeso.2007.10.049
(22) Ma, X.;Wang, X.; Song, C. J. Am. Chem. Soc. 2009, 131, 5777.doi: 10.1021/ja8074105
(23) Qi, G.;Wang, Y.; Estevez, L.; Duan, X.; Anako, N.; Park, A. H.A. Energy Environ. Sci. 2011, 4, 444. doi: 10.1039/c0ee00213e
(24) Zhang, H. D. Mater. Rev. 2009, 23, 93. [张海东. 材料导报,2009, 23, 93.]
(25) Subagyono, D. J. N.; Liang, Z.; Knowles, G. P.; Chaffee, A. L.Chem. Eng. Res. Des. 2011, 89, 1647. doi: 10.1016/j.cherd.2011.02.019
(26) Zou, Z. C.;Wei, Q.; Na,W.; Sun, H.; Nei, Z. R. J. Inorg. Mater.2009, 24, 702. [邹泽昌, 韦奇, 纳薇, 孙慧, 聂祚仁. 无机材料学报, 2009, 24, 702.] doi: 10.3724/SP.J.1077.2009.00702
(27) Yan, X.; Zhang, L.; Zhang, Y.; Qiao, K.; Yan, Z.; Komarneni, S.Chem. Eng. J. 2011, 168, 918. doi: 10.1016/j.cej.2011.01.066
(28) Qi, G.; Fu, L.; Choi, B. H.; Giannelis, E. P. Energy Environ. Sci.2012, 5, 7368. doi: 10.1039/c2ee21394j
(29) Zhao, J.; Simeon, F.;Wang, Y.; Luo, G.; Hatton, T. A. RSC Adv.2012, 2, 6509. doi: 10.1039/c2ra20149f
(30) Feng, X. X.; Hu, G. S.; Hu, X.; Xie, G. Q.; Xie, Y. L.; Lu, J. Q.;Luo, M. F. Ind. Eng. Chem. Res. 2013, 52, 4221. doi: 10.1021/ie301946p
(31) Schmidt-Winkel, P.; Lukens,W.W.; Yang, P.; Margolese, D. I.;Lettow, J. S.; Ying, J. Y.; Stucky, G. D. Chem. Mater. 2000, 12,686. doi: 10.1021/cm991097v
(32) Harlick, P. J. E.; Sayari, A. Ind. Eng. Chem. Res. 2006, 45,3248. doi: 10.1021/ie051286p
(33) Franchi, R. S.; Harlick, P. J. E.; Sayari, A. Ind. Eng. Chem. Res.2005, 44, 8007. doi: 10.1021/ie0504194

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] GUO Yun-Peng, FENG Jie, LI Wen-Ying. Effect of Ni Doping on Electron Transfer in Ni/MgO Catalysts[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1796-1802.
[4] ZHOU Liang, ZHANG Xue-Hua, LIN Lin, LI Pan, SHAO Kun-Juan, LI Chun-Zhong, HE Tao. Visible-Light Photocatalytic Reduction of CO2 by CoTe Prepared via a Template-Free Hydrothermal Method[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1884-1890.
[5] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[6] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[7] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[8] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[9] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[10] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. Chim. Sin., 2017, 33(4): 845-852.
[11] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[12] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[13] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[14] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[15] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.