Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (06): 1281-1288    DOI: 10.3866/PKU.WHXB201304101
Influence of Catalyst Acidity on Dealkylation, Isomerization and Alkylation in MTA Process
ZHANG Jin-Gui1, QIAN Wei-Zhong1, TANG Xiao-Ping1,2, SHEN Kui1, WANG Tong1,2, HUANG Xiao-Fan2, WEI Fei1
1 Beijing Key Laboratory of Green Reaction Engineering & Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China;
2 Huadian Coal Industry Group Co. Ltd., Beijing, 100031, P. R. China
Download:   PDF(929KB) Export: BibTeX | EndNote (RIS)      


Relationship between aromatics distribution, in the process of methanol to aromatics (MTA), and the conversion of methanol and the catalyst acidity was investigated over a series of Zn/P/ZSM-5 catalysts with different Si/Al molar ratios and zinc loading. To understand the contribution of aromatization, isomerization, dealkylation and alkylation reactivity of the catalyst to the aromatics distribution, coke deposition degree of Zn/P/ZSM-5 catalyst was tailored as using different feedstocks including methanol, xylene or the mixture of methanol and toluene. With the coke deposition, the amount of different types of acidic sites of catalyst varied significantly, characterized by NH3-temperature programmed desorption (NH3-TPD) and pyridine-infrared methods. Aromatization, dealkylation, alkylation, and isomerization showed sensitivity to a reduction in the density of strongly acidic sites. Dealkylation reaction was preferentially inhibited just by slightly decreasing the density of strong acid sites. However, aromatization and isomerization reaction were inhibited only when the density of strong acid sites was significantly decreased. In all cases, alkylation was found to be uninfluenced by acidic site density. A Zn/P/ZSM-5 catalyst with Si/Al molar ratio of 14 and 3% (w) Zn loading exhibited aromatics yields of 75% and xylene yields of about 35%, indicating potential for industrial application.

Key wordsMethanol      ZSM-5 zeolite      Aromatization      Dealkylation      Alkylation      Isomerization     
Received: 16 January 2013      Published: 10 April 2013
MSC2000:  O643  

The project was supported by the National High Technology Research and Development Program of China (863) (2012AA051003).

Cite this article:

ZHANG Jin-Gui, QIAN Wei-Zhong, TANG Xiao-Ping, SHEN Kui, WANG Tong, HUANG Xiao-Fan, WEI Fei. Influence of Catalyst Acidity on Dealkylation, Isomerization and Alkylation in MTA Process. Acta Phys. Chim. Sin., 2013, 29(06): 1281-1288.

URL:     OR

(1) Olsbye, U.; Svelle, S.; Bjorgen, M.; Beato, P.; Janssens, T. V.W.; Joensen, F.; Bordiga, S.; Lillerud, K. P. Angew. Chem. Int. Edit. 2012, 51, 2. doi: 10.1002/anie.201107584
(2) Keil, F. J. Microporous Mesoporous Mat. 1999, 29, 49. doi: 10.1016/S1387-1811(98)00320-5
(3) Stocker, M. Microporous Mesoporous Mat. 1999, 29, 3. doi: 10.1016/S1387-1811(98)00319-9
(4) Zaidi, H. A.; Pant, K. K. Catal. Today 2004, 96, 155. doi: 10.1016/j.cattod.2004.06.123
(5) Freeman, D.;Wells, R. P. K.; Hutchings, G. J. J. Catal. 2002,205, 358. doi: 10.1006/jcat.2001.3446
(6) Freeman, D.;Wells, R. P. K.; Hutchings, G. J. Chem. Commun.2001, 1754.
(7) Ni, Y. M.; Peng,W. Y.; Sun, A. M.; Mao,W. L.; Hu, J. L.; Li, T.;Li, G. X. J. Ind. Eng. Chem. 2010, 16, 503. doi: 10.1016/j.jiec.2010.03.011
(8) Lopez-Sanchez, J. A.; Conte, M.; Landon, P.; Zhou,W.; Bartley,J. K.; Taylor, S. H.; Carley, A. F.; Kiely, C. J.; Khalid, K.;Hutchings, G. J. Catal. Lett. 2012, 142, 1049. doi: 10.1007/s10562-012-0869-2
(9) Tian, T.; Qian,W. Z.; Sun, Y. J.; Cui, Y.; Lu, Y. Y.;Wei, F.Modern Chemical Industry 2009, 29, 55. [田涛, 骞伟中, 孙玉建, 崔宇, 卢俨俨, 魏飞. 现代化工, 2009, 29, 55.]
(10) Tian, T.; Qian,W. Z.; Tang, X. P.; Yun, S.;Wei, F. Acta Phys. -Chim. Sin. 2010, 26, 3305. [田涛, 骞伟中, 汤效平,恽松, 魏飞. 物理化学学报, 2010, 26, 3305.] doi: 10.3866/PKU.WHXB20101228
(11) Wang, J. Y.; Li,W. H.; Hu, J. X. Journal of Fuel Chemistry and Technology 2009, 37, 607. [王金英, 李文怀, 胡津仙. 燃料化学学报, 2009, 37, 607.]
(12) Kecskemeti, A.; Barthos, R.; Solymosi, F. J. Catal. 2008, 258,111. doi: 10.1016/j.jcat.2008.06.003
(13) Choudhary, V. R.; Panjala, D.; Banerjee, S. Appl. Catal. A 2002,231, 243. doi: 10.1016/S0926-860X(02)00061-3
(14) Inoue, Y.; Nakashiro, K.; Ono, Y. Microporous Mat. 1995, 4,379. doi: 10.1016/0927-6513(95)00020-A
(15) Bjørgen, M.; Svelle, S.; Joensen, F.; Nerlov, J.; Kolboe, S.;Bonino, F.; Palumbo, L.; Bordiga, S.; Olsbye, U. J. Catal. 2007,249, 195. doi: 10.1016/j.jcat.2007.04.006
(16) Adebajo, M. O.; Long, M. A. Catal. Commun. 2003, 4, 71. doi: 10.1016/S1566-7367(02)00259-5
(17) Lukyanov, D. B.; Gnep, N. S.; Guisnet, M. R. Ind. Eng. Chem. Res. 1995, 34, 516. doi: 10.1021/ie00041a012
(18) Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meler,W. M.J. Phys. Chem. 1981, 85, 2238. doi: 10.1021/j150615a020
(19) Joshi, Y. V.; Thomson, K. T. J. Phys. Chem. C 2008, 112, 12825.doi: 10.1021/jp712071k
(20) Olson, D. H.; Haag,W. O. ACS Symp. Ser. 1984, 248, 275. doi: 10.1021/symposium
(21) Mirth, G.; Cejka, J.; Lercher, J. A. J. Catal. 1993, 139, 24. doi: 10.1006/jcat.1993.1003
(22) Guisnet, M.; Gnep, N. S.; Morin, S. Microporous Mesoporous Mat. 2000, 35 -36, 47.
(23) Ivanova, I. I.; Corma, A. J. Phys. Chem. B 1997, 101, 547. doi: 10.1021/jp961468k
(24) Tsai, T.; Liu, S.;Wang, I. Appl. Catal. A 1999, 181, 355. doi: 10.1016/S0926-860X(98)00396-2
(25) Serra, J. M.; Guillon, E.; Corma, A. J. Catal. 2004, 227, 459.doi: 10.1016/j.jcat.2004.08.006
(26) Zheng, S. R.; Heydenrych, H. R.; Jentys, A.; Lercher, J. A.J. Phys. Chem. B 2002, 106, 9552. doi: 10.1021/jp014091d
(27) Bibby, D. M.; Howe, R. F.; Mclellan, G. D. Appl. Catal. A 1992,93, 1. doi: 10.1016/0926-860X(92)80291-J
(28) Benito, P. L.; Gayubo, A. G.; Aguayo, A. T.; Olazar, M.; Bilbao,J. Ind. Eng. Chem. Res. 1996, 35, 3991. doi: 10.1021/ie950462z
(29) Biscardi, J. A.; Meitzner, G. D.; Iglesia, E. J. Catal. 1998, 179,192. doi: 10.1006/jcat.1998.2177
(30) El-Malki, E. M.; Van Santen, R. A.; Sachtler,W. M. H. J. Phys. Chem. B 1999, 103, 4611. doi: 10.1021/jp990116l
(31) Bhan, A.; Delgass,W. N. Catal. Rev. 2008, 50, 19. doi: 10.1080/01614940701804745

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[4] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[5] WEI Chun-Lei, GAO Jie, WANG Kai, DONG Mei, FAN Wei-Bin, QIN Zhang-Feng, WANG Jian-Guo. Effect of Hydrogen pre-treatment on the catalytic properties of Zn/HZSM-5 zeolite for ethylene aromatization reaction[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1483-1491.
[6] LIU Dan-Yang, WANG Wan-Luo, XU Shou-Hong, LIU Hong-Lai. Photo-Responsivity of Azobenzene-Containing Glycolipid within Liquid-Gas Interface[J]. Acta Phys. Chim. Sin., 2017, 33(4): 836-844.
[7] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[8] WANG Yue-Hua, WANG Jun-Jie, LIANG Jin-Hua, WANG Jun-Ge, CHENG Jing, DING Zhong-Xie, LIU Zhen, REN Xiao-Qian. Shape-Selective Alkylation of Biphenyl with Cyclohexanol over MCM-22 Zeolite Catalyst Modified by SiO2[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2277-2283.
[9] YUAN Ping, WANG Hao, XUE Yan-Feng, LI Yan-Chun, WANG Kai, DONG Mei, FAN Wei-Bin, QIN Zhang-Feng, WANG Jian-Guo. Catalytic Properties of Different Crystal Sizes for ZSM-5 Zeolites on the Alkylation of Benzene with Methanol and Optimization of the Reaction Conditions[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1775-1784.
[10] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1785-1794.
[11] TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1473-1481.
[12] ZHAO Jun-Feng, SUN Xiao-Li, HUANG Xu-Ri, LI Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1175-1182.
[13] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. Chim. Sin., 2016, 32(4): 950-960.
[14] WANG Xin, ZHANG Yu-Jin, WANG Chuan-Kui. Optical Properties and Responsive Mechanism of Carbazole-Based Two-Photon Fluorescent Probes for the Detection of Hypochlorite[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2913-2920.
[15] CHENG Xiao-Meng, LI Yu, CHEN Zong, LI Hong-Ping, ZHENG Xiao-Fang. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2671-2677.