Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (07): 1487-1493    DOI: 10.3866/PKU.WHXB201304121
Nano-WO3 Composite Materials as Electro-Catalyst for Methanol Oxidation
ZHOU Yang1,2, LIU Wei-Ming1, HU Xian-Chao1,3, CHU You-Qun1, MA Chun-An1
1 State Key Laboratory Breeding Base for Green Chemistry Synthesis Technology, International Science & Technology Cooperation Base of Energy Materials and Application, College Of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hiangzhou 310032, P. R. China;
2 Jiangxi University of Science and Technology, Metallurgical and Chemical Engineering Institute. Ganzhou 341000, Guangxi Province, P. R. China;
3 Research Center of Analysis and Measurement; Zhejiang University of Technology, Hangzhou, 310032, P. R. China
Download:   PDF(1167KB) Export: BibTeX | EndNote (RIS)      


Nano-WO3 modified carbon nanotube supported Pt nanoparticles (Pt/WO3-CNTs) with uniform dimension were prepared by impregnated precipitation method, and Pt nanoparticles were loaded on the surface of WO3-CNTs by means of microwave-assisted glycol method. X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) reveal that the Pt nanoparticles have a face-centered cubic crystal structure and are highly dispersed on the surface of WO3-modified CNTs with a narrow size distribution between 3 and 5 nm. X-ray photoelectron spectroscopy (XPS) shows that more metallic Pt is present on Pt/ WO3-CNTs than on Pt/CNTs catalyst. Compared with the Pt/CNTs catalyst without WO3 modification, the Pt/ WO3-CNTs composite catalyst not only shows relative large electrochemical active surface area, high catalyst activity toward methanol electro-oxidation, but also exhibits very high stability with apparent antiposion tolerance to the incomplete oxidized species during methanol oxidation.

Key wordsDirect methanol fuel cell      Carbon nanotube      Tungsten trioxide      Electro-catalysis     
Received: 17 December 2012      Published: 12 April 2013
MSC2000:  O646  

The project was supported by the International Science & Technology Cooperation Program of China (2010DFB63680), Zhejiang Ministry of Education Foundation, China (Y201225711), and Key Project of Natural Science Foundation of Zhejiang Province, China (Z4100790).

Cite this article:

ZHOU Yang, LIU Wei-Ming, HU Xian-Chao, CHU You-Qun, MA Chun-An. Nano-WO3 Composite Materials as Electro-Catalyst for Methanol Oxidation. Acta Phys. Chim. Sin., 2013, 29(07): 1487-1493.

URL:     OR

(1) Jung, E. H.; Jung, U. H.; Yang, T. H.; Peak, D. H.; Jung, D. H.;Kim, S. H. International Journal of Hydrogen Energy 2007, 32,903. doi: 10.1016/j.ijhydene.2006.12.014
(2) Li, X.; Chen, J. L.; Zhu, Z. H.; De Marco, R.; Bradley, J.; Dicks,A. Energy & Fuels 2009, 23, 3721. doi: 10.1021/ef900203h
(3) Han, D. M.; Guo, Z. P.; Zeng, R.; Kim, C. J.; Meng, Y. Z.; Liu,H. K. International Journal of Hydrogen Energy 2009, 34,2426. doi: 10.1016/j.ijhydene.2008.12.073
(4) Corpuz, A. R.; Olson, T. S.; Joghee, P.; Pylypenko, S.;Dameron, A. A.; Dinh, H. N.; O'Neill, K. J.; Hurst, K. E.;Bender, G.; Gennett, T.; Pivovar, B. S.; Richards, R. M.;O'Hayre, R. P. Journal of Power Sources 2012, 217, 142. doi: 10.1016/j.jpowsour.2012.06.012
(5) Kakati, N.; Lee, S. H.; Maiti, J.; Yoon, Y. S. Surface Science2012, 606, 1633. doi: 10.1016/j.susc.2012.07.008
(6) Chu, Y. Y.;Wang, Z. B.; Jiang, Z. Z.; Gu, D. M.; Yin, G. P.Journal of Power Sources 2012, 203, 17. doi: 10.1016/j.jpowsour.2011.11.025
(7) Remona, A. M.; Phani, K. L. N. Journal of Fuel Cell Science and Technology 2011, 8, 011001.
(8) Chu, Y. H.; Shul, Y. G. International Journal of Hydrogen Energy 2010, 35, 11261. doi: 10.1016/j.ijhydene.2010.07.062
(9) Wu, G.; Swaidan, R.; Cui, G. F. Journal of Power Sources 2007,172, 180. doi: 10.1016/j.jpowsour.2007.07.034
(10) Chung, Y. S.; Pak, C.; Park, G. S.; Jeon,W. S.; Kim, J. R.; Lee,Y.; Chang, H.; Seung, D. Journal of Physical Chemistry C 2008,112, 313. doi: 10.1021/jp0759372
(11) Piela, P.; Eickes, C.; Brosha, E.; Garzon, F.; Zelenay, P. Journal of the Electrochemical Society 2004, 151, A2053.
(12) Profeti, L. P. R.; Profeti, D.; Olivi, P. International Journal of Hydrogen Energy 2009, 34, 2747. doi: 10.1016/j.ijhydene.2009.01.011
(13) Zhou, C. M.;Wang, H. J.; Liang, J. H.; Peng, F.; Yu, H.; Yang, J.Chinese Journal of Catalysis 2008, 29, 1093. doi: 10.1016/S1872-2067(09)60007-3
(14) Frolova, L. A.; Dobrovolsky, Y. A. Russian Chemical Bulletin2011, 60, 1101. doi: 10.1007/s11172-011-0174-z
(15) Guo, D. J.; You, J. M. Journal of Power Sources 2012, 198, 127.doi: 10.1016/j.jpowsour.2011.10.017
(16) Xu, M.W.; Gao, G. Y.; Zhou,W. J.; Zhang, K. F.; Li, H. L.Journal of Power Sources 2008, 175, 217. doi: 10.1016/j.jpowsour.2007.09.069
(17) Shen, P. K.; Chen, K. Y.; Tseung, A. C. C. Journal of the Electrochemical Society 1995, 142, L85.
(18) Shen, P. K.; Tseung, A. C. C. Journal of the Electrochemical Society 1994, 141, 3082. doi: 10.1149/1.2059282
(19) Shen, P. K.; Chen, K. Y.; Tseung, A. C. C. Journal of the Chemical Society-Faraday Transactions 1994, 90, 3089. doi: 10.1039/ft9949003089
(20) Cui, X. Z.; Shi, J. L.; Chen, H. R.; Zhang, L. X.; Guo, L. M.;Gao, J. H.; Li, J. B. Journal of Physical Chemistry B 2008, 112,12024.
(21) Jayaraman, S.; Jaramillo, T. F.; Baeck, S. H.; McFarland, E.W.Journal of Physical Chemistry B 2005, 109, 22958. doi: 10.1021/jp053053h
(22) Zhang, D. Y.; Ma, Z. F.;Wang, G. X.; Konstantinov, K.; Yuan,X. X.; Liu, H. K. Electrochemical and Solid State Letters 2006,9, A423.
(23) Chen, K. Y.; Shen, P. K.; Tseung, A. C. C. Journal of the Electrochemical Society 1995, 142, L185.
(24) Shen, P. K.; Chen, K. Y.; Tseung, A. C. C. Journal of Electroanalytical Chemistry 1995, 389, 223. doi: 10.1016/0022-0728(95)03974-L
(25) Yang, C. Z.; van der Laak, N. K.; Chan, K. Y.; Zhang, X.Electrochimica Acta 2012, 75, 262. doi: 10.1016/j.electacta.2012.04.107
(26) Cui, Z. M.; Feng, L. G.; Liu, C. P.; Xing,W. Journal of Power Sources 2011, 196, 2621. doi: 10.1016/j.jpowsour.2010.08.118
(27) Rajesh, B.; Karthik, V.; Karthikeyan, S.; Thampi, K. R.; Bonard,J. M.; Viswanathan, B. Fuel 2002, 81, 2177. doi: 10.1016/S0016-2361(02)00162-X
(28) Sheng, J. F.; Ma, C. A.; Zhang, C.; Li, G. H. Acta Physico- Chimica Sinica 2007, 23, 181. [盛江峰, 马淳安, 张诚, 李国华. 物理化学学报, 2007, 23, 181.] doi: 10.3866/PKU.WHXB20070209
(29) Rajeswari, J.; Viswanathan, B.; Varadarajan, T. K. Materials Chemistry and Physics 2007, 106, 168. doi: 10.1016/j.matchemphys.2007.05.032
(30) Ahmadi, R.; Amini, M. K. International Journal of Hydrogen Energy 2011, 36, 7275. doi: 10.1016/j.ijhydene.2011.03.013
(31) Raghuveer, V.; Viswanathan, B. Journal of Power Sources 2005,144, 1. doi: 10.1016/j.jpowsour.2004.11.033
(32) Su, F. B.; Poh, C. K.; Tian, Z. G.; Xu, G.W.; Koh, G. Y.;Wang,Z.; Liu, Z. L.; Lin, J. Y. Energy & Fuels 2010, 24, 3727. doi: 10.1021/ef901275q
(33) Park, K.W.; Choi, J. H.; Sung, Y. E. Journal of Physical Chemistry B 2003, 107, 5851. doi: 10.1021/jp0340966
(34) Tseung, A. C. C.; Chen, K. Y. Catalysis Today 1997, 38, 439.doi: 10.1016/S0920-5861(97)00053-9
(35) Ye, J. L.; Liu, J. G.; Zou, Z. G.; Gu, J.; Yu, T. Journal of Power Sources 2010, 195, 2633. doi: 10.1016/j.jpowsour.2009.11.055

[1] XIANG Xin-Ran, WAN Xiao-Mei, SUO Hong-Bo, HU Yi. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. Chim. Sin., 2018, 34(1): 99-107.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[4] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[5] XIA Ji-Ye, DONG Guo-Dong, TIAN Bo-Yuan, YAN Qiu-Ping, HAN Jie, QIU Song, LI Qing-Wen, LIANG Xue-Lei, PENG Lian-Mao. Contact Resistance Effects in Carbon Nanotube Thin Film Transistors[J]. Acta Phys. Chim. Sin., 2016, 32(4): 1029-1035.
[6] LI Qing, YANG Deng-Feng, WANG Jian-Hua, WU Qi, LIU Qing-Zhi. Biomimetic Modification and Desalination Behavior of (15,15) Carbon Nanotubes with a Diameter Larger than 2 nm[J]. Acta Phys. Chim. Sin., 2016, 32(3): 691-700.
[7] SUN Hao-Yu, PU Jin-Huan, TANG Gui-Hua. High-Performance Thermogalvanic Cell Based on Organic Nanofluids[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2555-2562.
[8] XIA Kai-Lun, JIAN Mu-Qiang, ZHANG Ying-Ying. Advances inWearable and Flexible Conductors Based on Nanocarbon Materials[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2427-2446.
[9] YANG Li-Jiang, GAO Yi-Qin. Molecular Dynamic Simulations of the Effects of Trimethylamine- N-oxide/Urea Mixture on the Hydration of Single-Walled Carbon Nanotube Interiors[J]. Acta Phys. Chim. Sin., 2016, 32(1): 313-320.
[10] GU Ze-Xing, TU Chang-Neng, WANG Yun, YANG Ji-Jun, LIU Ning, LIAO Jia-Li, YANG Yuan-You, TANG Jun. Preparation of Carbon Aerogels and Adsorption of Uranium(VI) from Aqueous Solution[J]. Acta Phys. Chim. Sin., 2015, 31(Suppl): 95-100.
[11] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1727-1732.
[12] SHEN Zhuang-Lin, HE Gao-Hong, ZHANG Ning, HAO Ce. Molecular Dynamics Simulation of Reverse-Osmotic Salt Rejection and Water Transport through Double-Walled Carbon Nanotube[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1025-1034.
[13] LI Li-Xiang, ZHAO Hong-Wei, XU Wei-Wei, ZHANG Yan-Qiu, AN Bai-Gang, GENG Xin. Preparation and Electrocatalytic Performance of Iron Based Nitrogen Doped Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2015, 31(3): 498-504.
[14] YE Huang-Qing, DENG Yong-Hong, YAN Yan, ZHANG Mei-Jie, QIAN Yong, QIU Xue-Qing. Influence of Soldium Lignosulfonate with Different Molecular Weights on the Dispersion of Multiwalled Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1991-1996.
[15] LIU Fen, ZOU Jian-Wei, HU Gui-Xiang, JIANG Yong-Jun. Quantitative Structure-Property Relationship Studies on the Adsorption of Aromatic Contaminants by Carbon Nanotubes[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1616-1624.