Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (07): 1558-1565    DOI: 10.3866/PKU.WHXB201304161
CATALYSIS AND SURFACE SCIENCE     
Investigation on Photocatalytic Reduction of CO2into CH4 Using SrB2O4/SrCO3Composite Catalyst
GUO Li-Mei1, KUANG Yuan-Jiang2, YANG Xiao-Dan1, YU Yan-Long1, YAO Jiang-Hong1, CAO Ya-An1
1 Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics School and School of Physics, Nankai University, Tianjin 300457, P. R. China;
2 Maintenance Training Center, Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu Province, P. R. China
Download:   PDF(1111KB) Export: BibTeX | EndNote (RIS)      

Abstract  

An SrB2O4/SrCO3composite catalyst is synthesized by the simple sol-gel method. Reduction of carbon dioxide into methane in the presence of water is used to evaluate the photocatalytic activity of the composite catalyst. SrB2O4/SrCO3exhibits better photocatalytic performance than TiO2(P25) and SrB2O4 under irradiation with UV light. The crystalline structure, crystallite size, and the BET surface areas of the resultant photocatalysts are studied via the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms. The energy levels of the SrB2O4/SrCO3 photocatalyst are determined from characterization with UV-Vis diffuse reflectance absorption spectra, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) measurements. The heterojunction formed at the SrB2O4/SrCO3interface efficiently promotes photogenerated carrier separation and increases the use of photogenerated carriers in photocatalytic reactions at the solid/liquid interface, resulting in high photocatalytic activity under UV light.



Key wordsSrB2O4/SrCO3composite catalyst      Photocatalytic reduction of CO2      CH4      Photocatalytic activity     
Received: 15 February 2013      Published: 16 April 2013
MSC2000:  O643  
  O644  
Fund:  

The project was supported by the National Natural Science Foundation of China (51072082, 21173121).

Corresponding Authors: CAO Ya-An     E-mail: caoyaan@yahoo.com
Cite this article:

GUO Li-Mei KUANG Yuan-Jiang YANG Xiao-Dan YU Yan-Long YAO Jiang-Hong CAO Ya-An. Investigation on Photocatalytic Reduction of CO2into CH4 Using SrB2O4/SrCO3Composite Catalyst. Acta Phys. Chim. Sin., 2013, 29(07): 1558-1565.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201304161     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I07/1558

(1) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Nature 1979,277, 637.
(2) Tseng, I. H.;Wu, J. C.; Chou, H. Y. J. Catal. 2004, 221, 432.doi: 10.1016/j.jcat.2003.09.002
(3) Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.;Gray, K. A.; He, H.; Zapol, P. J. Am. Chem. Soc. 2011, 133,3964. doi: 10.1021/ja108791u
(4) Xia, X. H.; Jia, Z. J.; Yu, Y.; Liang, Y.;Wang, Z.; Ma, L. L.Carbon 2007, 45, 717. doi: 10.1016/j.carbon.2006.11.028
(5) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
(6) Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang,M. H.; Whangbo, M. H. Catal. Commun. 2009, 11, 210. doi: 10.1016/j.catcom.2009.10.010
(7) Yang, C. C.; Yu, Y. H.; Linden, B. V. D.;Wu, J. C. S.; Mul, G.J. Am. Chem. Soc. 2010, 132, 8398. doi: 10.1021/ja101318k
(8) Tan, S. S.; Zou, L.; Hu, E. Sci. Technol. Adv. Mater. 2007, 9, 89.
(9) Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. J. Phys. Chem. Lett. 2010, 1, 48. doi: 10.1021/jz9000032
(10) Ikeue, K.; Yamashita, H.; Anpo, M. J. Phys. Chem. B 2001, 105,8350. doi: 10.1021/jp010885g
(11) Lo, C. C.; Hung, C. H.; Yuan, C. S.;Wu, J. F. Sol. Energy Mater. Sol. Cells 2007, 91, 1765. doi: 10.1016/j.solmat.2007.06.003
(12) Anpo, M.; Yamashita, H.; Ichihashi, Y.; Ehara, S. J. Electroanal. Chem. 1995, 396, 21. doi: 10.1016/0022-0728(95)04141-A
(13) Adachi, K.; Ohta, K.; Mizuna, T. Sol. Energy 1994, 53, 187. doi: 10.1016/0038-092X(94)90480-4
(14) Tan, S. S.; Zou, L.; Hu, E. Catal. Today 2006, 115, 269. doi: 10.1016/j.cattod.2006.02.057
(15) Pan, P.W.; Chen, Y.W. Catal. Commun. 2007, 8, 1546. doi: 10.1016/j.catcom.2007.01.006
(16) Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.;Yan, S. C.; Zou, Z. G. J. Am. Chem. Soc. 2010, 132, 14385. doi: 10.1021/ja1068596
(17) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan,X. X.;Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G.Angew. Chem. 2010, 122, 6544. doi: 10.1002/ange.201003270
(18) Guo, L. M.; Kuang, Y. J.; Yang, X. D.; Yu, Y. L.; Yao, J. H.;Cao, Y. A. Acta Phys. -Chim. Sin. 2013, 29, 397. [郭丽梅, 匡元江, 杨晓丹, 于彦龙, 姚江宏, 曹亚安. 物理化学学报, 2013,29, 397.] doi: 10.3866/PKU.WHXB201211161
(19) Song, L. M.; Zhang, S. J.; Chen, B. Catal. Commun. 2009, 10,1565. doi: 10.1016/j.catcom.2009.03.022
(20) Li, R.; Bao, L. H.; Li, X. D. Cryst. Eng. Commum. 2011, 13,5858. doi: 10.1039/c1ce05537b
(21) Cao, Y. Q.; He, T.; Chen, Y. M.; Cao, Y. A. J. Phys. Chem. C2010, 114, 3627. doi: 10.1021/jp100786x
(22) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p
(23) Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem.1995, 99, 16655. doi: 10.1021/j100045a027
(24) Yu, J. C.; Ho,W.; Yu, J.; Hark, S. K.; Lu, K. Langmuir 2003, 19,3889. doi: 10.1021/la025775v
(25) Saraf, L. V.; Patil, S. I.; Ogale, S. B. Int. J. Mod. Phys. B 1998,12, 2635. doi: 10.1142/S0217979298001538
(26) Yuan, J. X.;Wu, Q.; Zhang, P.; Yao, J. H.; He, T.; Cao, Y. A.Environ. Sci. Technol. 2012, 46, 2330. doi: 10.1021/es203333k
(27) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2588. doi: 10.1021/cm049100k
(28) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
(29) Izumi, Y. Coord. Chem. Rev. 2012, 10, 1016.

[1] GUO Yun-Peng, FENG Jie, LI Wen-Ying. Effect of Ni Doping on Electron Transfer in Ni/MgO Catalysts[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1796-1802.
[2] JIA Yong-Chang, WANG Shu-Yuan, MENG Lian, LU Ji-Qing, LUO Meng-Fei. Effects of Zr Addition on CO and CH4 Catalytic Oxidation over PdO/PdO/Ce1-xPdxO2-δ Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1801-1809.
[3] LI Xian-Hua, ZHANG Lei-Gang, WANG Xue-Xue, YU Qing-Bo. PANI/g-C3N4 Composites Synthesized by Interfacial Polymerization and Their Thermal Stability and Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2015, 31(4): 764-770.
[4] SHANG Hong-Yan, HU Wei, WANG Yun, REN Cheng-Jun, GONG Mao-Chu, CHEN Yao-Qiang. Effects of H2O and O2 on the Reaction of NO Reduction by CH4 under Stoichiometric Natural Gas Vehicles[J]. Acta Phys. Chim. Sin., 2015, 31(4): 750-756.
[5] YU Chang-Lin, WEI Long-Fu, LI Jia-De, HE Hong-Bo, FANG Wen, ZHOU Wan-Qin. Preparation and Characterization of GO/Ag3PO4 Composite Photocatalyst and Its Visible Light Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2015, 31(10): 1932-1938.
[6] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Phys. Chim. Sin., 2015, 31(1): 153-158.
[7] ZHAO Wei-Rong, SHI Qiao-Meng, LIU Ying. Performance, Deactivation and Regeneration of SnO2/TiO2 Nanotube Composite Photocatalysts[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1318-1324.
[8] FU Ping-Feng, ZHANG Peng-Yi. Low-Temperature Electrostatic Self-Assembly of Noble Metals on TiO2 Nanostructured Films with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2014, 30(5): 965-972.
[9] WANG Jing-Sheng, WANG En-Jun, YU Yan-Long, GUO Li-Mei, CAO Ya-An. Visible Light Photocatalytic Activity of an In-Doped TiO2 Thin Film with a Three-Dimensional Ordered Structure[J]. Acta Phys. Chim. Sin., 2014, 30(3): 513-519.
[10] LIN Xue, GUO Xiao-Yu, WANG Qing-Wei, CHANG Li-Min, ZHAI Hong-Ju. Hydrothermal Synthesis and Efficient Visible Light Photocatalytic Activity of Bi2MoO6/BiVO4 Heterojunction[J]. Acta Phys. Chim. Sin., 2014, 30(11): 2113-2120.
[11] LI Bin WANG Hong DING Fu-Chen LI Cui-Qing SONG Yong-Ji KE Ming REN Cui-Tao. Effects of Preparation Methods on the Catalytic Performance of Selective Catalytic Reduction of NO with CH4 over Co-MOR Catalysts[J]. Acta Phys. Chim. Sin., 2013, 29(06): 1289-1296.
[12] GUO Li-Mei, KUANG Yuan-Jiang, YANG Xiao-Dan, YU Yan-Long, YAO Jiang-Hong, CAO Ya-An. Photocatalytic Reduction of CO2 into CH4 Using SrB2O4 Catalyst[J]. Acta Phys. Chim. Sin., 2013, 29(02): 397-402.
[13] WANG Yan-Hong, CHEN Yu-Juan, BAO Ling, LANG Xue-Mei, FAN Shuan-Shi. Molecular Dynamics Simulation of CH4 Hydrate Decomposition in the Presence of Poly(2-ethyl-2-oxazoline)[J]. Acta Phys. Chim. Sin., 2012, 28(07): 1683-1690.
[14] LI Cao-Long, CHEN Wei, YUAN Jian, SHANGGUAN Wen-Feng. Hydrogen Evolution by Photocatalytic Steam Reforming of Methane over Pt/TiO2[J]. Acta Phys. Chim. Sin., 2012, 28(02): 450-456.
[15] CHEN Jin-Yi, LI Nian, LI Jing, ZHU Liang, PENG Chang-Jun. Synthesis and Visible Light Photocatalytic Activity of Cross-Linked Sodium Rectorite/Cu2O Nanocomposites[J]. Acta Phys. Chim. Sin., 2011, 27(04): 932-938.