Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (08): 1666-1672    DOI: 10.3866/PKU.WHXB201304232
Improvement of Surface Structure and Enhancement of Conductivity of LiFePO4 Surface by Graphene and Graphene-Like B-C-N Coating
SUN Chao, YAN Liu-Ming, YUE Bao-Hua
Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444, P. R. China
Download:   PDF(1439KB) Export: BibTeX | EndNote (RIS)      


Density functional theory calculations are used to investigate the surface structure and electric conductivity of the (010) surface of LiFePO4 coated with graphene or graphene-like B-C-N. The calculations indicate that the interaction between the coating and LiFePO4 (010) surface improves the electric conductivity of the LiFePO4 (010) surface. The band gap decreases from 3.3 to 2.1 eV when the LiFePO4 (010) surface is coated with graphene. When the LiFePO4 (010) surface is coated with graphene-like B-C-N, the valence band maximum and conduction band minimum are still dominated by Fe-3d orbitals; however, two in-gap states with an interval of 0.6 eV appear in the band gap, which are attributed to the bonding interaction between graphene-like B-C-N and the LiFePO4 (010) surface.

Key wordsLiFePO4      Graphene      Graphene-like B-C-N      Density of states      Density functional theory     
Received: 29 January 2013      Published: 23 April 2013
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21073118), Innovation Program of Shanghai Municipal Education Commission, China (13ZZ078), Shanghai Leading Academic Discipline Project, China (J50101), and Shanghai Higher Education Connotation Construction“085”Project“Materials Genome Engineering”, China.

Corresponding Authors: YAN Liu-Ming     E-mail:
Cite this article:

SUN Chao, YAN Liu-Ming, YUE Bao-Hua. Improvement of Surface Structure and Enhancement of Conductivity of LiFePO4 Surface by Graphene and Graphene-Like B-C-N Coating. Acta Phys. Chim. Sin., 2013, 29(08): 1666-1672.

URL:     OR

(1) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B.J. Electrochem. Soc. 1997, 144 (4), 1188. doi: 10.1149/1.1837571
(2) Delacourt, C.; Laffont, L.; Bouchet, R.;Wurm, C.; Leriche, J.B.; Morcrette, M.; Tarascon, J. M.; Masquelier, C.J. Electrochem. Soc. 2005, 152 (5), A913.
(3) Chu, D. B.; Li, Y.; Song, Q.; Zhou, Y. Acta Phys. -Chim. Sin.2011, 27 (8), 1863. [褚道葆, 李艳, 宋奇, 周莹. 物理化学学报, 2011, 27 (8), 1863.] doi: 10.3866/PKU.WHXB20110807
(4) Yu, H. M.; Zheng,W.; Cao, G. S.; Zhao, X. B. Acta Phys. -Chim. Sin. 2009, 25 (11), 2186. [余红明, 郑威, 曹高劭, 赵新兵.物理化学学报, 2009, 25 (11), 2186.] doi: 10.3866/PKU.WHXB20091113
(5) Ravet, N.; Goodenough, J. B.; Besner, S.; Simoneau, M.;Hovington, P.; Armand, M. Proceedings of the 196th ECSMeeting, Honolulu, Oct. 1999; pp 17-22.
(6) Xu, K.; Shen, L. F.; Mi, C. H.; Zhang, X. G. Acta Phys. -Chim. Sin. 2012, 28 (1), 105. [徐科, 申来法, 米常焕, 张校刚.物理化学学报, 2012, 28 (1), 105.] doi: 10.3866/PKU.WHXB201228105
(7) Sun, C.W.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. J. Am. Chem. Soc. 2011, 133 (7), 2132. doi: 10.1021/ja1110464
(8) Lepage, D.; Michot, C.; Liang, G. X.; Gauthier, M.; Schougaard,S. B. Angew. Chem. Int. Edit. 2011, 50 (30), 6884. doi: 10.1002/anie.201101661
(9) Chen, Z. H.; Dahn, J. R. J. Electrochem. Soc. 2002, 149 (9),A1184.
(10) Yuan, L. X.;Wang, Z. H.; Zhang,W. X.; Hu, X. L.; Chen, J. T.;Huang, Y. H.; Goodenough, J. B. Energy Environ. Sci. 2011, 4 (2), 269. doi: 10.1039/c0ee00029a
(11) Ouyang, C. Y.; Shi, S. Q.;Wang, Z. X.; Huang, X. J.; Chen, L.Q. Phys. Rev. B 2004, 69 (10), 104303. doi: 10.1103/PhysRevB.69.104303
(12) Nishimura, S.; Kobayashi, G.; Ohoyama, K.; Kanno, R.;Yashima, M.; Yamada, A. Nat. Mater. 2008, 7 (9), 707.doi: 10.1038/nmat2251
(13) Fisher, C. A. J.; Islam, M. S. J. Mater. Chem. 2008, 18 (11),1209. doi: 10.1039/b715935h
(14) Wang, L.; Zhou, F.; Meng, Y. S.; Ceder, G. Phys. Rev. B 2007,76 (16), 165435. doi: 10.1103/PhysRevB.76.165435
(15) Yang, S. F.; Zavalij, P. Y.; Whittingham, M. S. Electrochem. Commun. 2001, 3 (9), 505. doi: 10.1016/S1388-2481(01)00200-4
(16) Dokko, K.; Koizumi, S.; Kanamura, K. Chem. Lett. 2006, 35 (3), 338. doi: 10.1246/cl.2006.338
(17) Chen, G. Y.; Song, X. Y.; Richardson, T. J. Electrochem. Solid- State Lett. 2006, 9 (6), A295.
(18) Zaghib, K.; Mauger, A.; Gendron, F.; Julien, C. M. Chem. Mater. 2008, 20 (2), 462. doi: 10.1021/cm7027993
(19) Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6 (1), 15.doi: 10.1016/0927-0256(96)00008-0
(20) Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54 (16), 11169.doi: 10.1103/PhysRevB.54.11169
(21) Blöchl, P. E. Phys. Rev. B 1994, 50 (24), 17953. doi: 10.1103/PhysRevB.50.17953
(22) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59 (3), 1758.doi: 10.1103/PhysRevB.59.1758
(23) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992,46 (11), 6671. doi: 10.1103/PhysRevB.46.6671
(24) Vosko, S. H.;Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58 (8),1200. doi: 10.1139/p80-159
(25) Zhou, F.; Cococcioni, M.; Kang, K.; Ceder, G. Electrochem. Commun. 2004, 6 (11), 1144. doi: 10.1016/j.elecom.2004.09.007
(26) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13 (12), 5188.doi: 10.1103/PhysRevB.13.5188
(27) Hoang, K.; Johannes, M. Chem. Mater. 2011, 23 (11), 3003.doi: 10.1021/cm200725j
(28) Maxisch, T.; Ceder, G. Phys. Rev. B 2006, 73 (17), 174112.doi: 10.1103/PhysRevB.73.174112
(29) Rousse, G.; Rodriguez-Carvajal, J.; Patoux, S.; Masquelier, C.Chem. Mater. 2003, 15 (21), 4082. doi: 10.1021/cm0300462
(30) Ouyang, X.; Lei, M.; Shi, S.; Luo, C.; Liu, D.; Jiang, D.; Ye, Z.;Lei, M. J. Alloy. Compd. 2009, 476 (1), 462. doi: 10.1016/j.jallcom.2008.09.028
(31) Oh, S.W.; Huang, Z. D.; Zhang, B. A.; Yu, Y.; He, Y. B.; Kim, J.K. J. Mater. Chem. 2012, 22 (33), 17215. doi: 10.1039/c2jm33615d
(32) Wang, B.;Wang, D. L.;Wang, Q. M.; Liu, T. F.; Guo, C. F.;Zhao, X. S. J. Mater. Chem. A 2013, 1 (1), 135. doi: 10.1039/c2ta00106c
(33) Yang, J. L.;Wang, J. J.; Li, X. F.;Wang, D. N.; Liu, J.; Liang, G.X.; Gauthier, M.; Li, Y. L.; Geng, D. S.; Li, R. Y.; Sun, X. L.J. Mater. Chem. 2012, 22 (15), 7537. doi: 10.1039/c2jm30380a

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[6] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[7] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[8] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[9] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[10] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[11] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[12] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[13] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[14] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[15] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1085-1107.