Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (07): 1501-1506    DOI: 10.3866/PKU.WHXB201304241
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis and Characterization of NiCo2O4 Nanoflower/Activated Carbon Fiber Composite and Its Supercapacitor Properties
WU Hong-Ying, WANG Huan-Wen
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
Download:   PDF(1127KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In the present work, NiCo2O4 nanowires grown directly on carbon fibers self-organize into a nanoflower morphology. The materials are prepared by hydrothermal treatment and subsequent low-temperature annealing. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results reveal a hierarchical three-dimensional mesoporous structure, which facilitates ion transport and electronic conduction for fast redox reactions. As a result, the electrode achieves a respectable specific capacitance of 1626 F·g-1 at 1 A·g-1 and high rate capability (65% retention at 10 A·g-1), so it shows promise for application in supercapacitors.



Key wordsNiCo2O4      Nanoflower      Hydrothermal treatment      Supercapacitor      Electrode material     
Received: 24 December 2012      Published: 24 April 2013
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (20963009, 21163017) and Natural Science Foundation of Gansu Province, China (0803RJA005).

Corresponding Authors: WU Hong-Ying     E-mail: hongying8860@163.com
Cite this article:

WU Hong-Ying, WANG Huan-Wen. Synthesis and Characterization of NiCo2O4 Nanoflower/Activated Carbon Fiber Composite and Its Supercapacitor Properties. Acta Phys. Chim. Sin., 2013, 29(07): 1501-1506.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201304241     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I07/1501

(1) Chen, Y. L.; Hu, Z. A.; Chang, Y. Q.;Wang, H.W.; Zhang, Z. Y.;Yang, Y. Y.;Wu, H. Y. J. Phys. Chem. C 2011, 115, 2563. doi: 10.1021/jp109597n
(2) Wang, H.W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.;Wu, H. Y.;Zhang, Z. Y.; Yang, Y. Y. J. Mater. Chem. 2011, 21, 10504. doi: 10.1039/c1jm10758e
(3) Guan, C.; Li, X.;Wang, Z.; Cao, X.; Soci, C.; Zhang, H.; Fan,H. J. Adv. Mater. 2012, 24, 4186. doi: 10.1002/adma.201104295
(4) Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/ja102267j
(5) Jiang, H.; Ma, J.; Li, C. Chem. Commun. 2012, 48, 4465. doi: 10.1039/c2cc31418e
(6) Wu, Z. S.;Wang, D.W.; Ren,W.; Zhao, J.; Zhou, G.; Li, F.;Cheng, H. M. Adv. Funct. Mater. 2010, 20, 3595. doi: 10.1002/adfm.v20:20
(7) Bi, R. R.;Wu, X. L.; Cao, F. F.; Jiang, L. Y.; Guo, Y. G.;Wan,L. J. J. Phys. Chem. C 2010, 114, 2448. doi: 10.1021/jp9116563
(8) Wang, H.;Wang, Y.;Wang, X. Electrochem. Commun. 2012, 18,92. doi: 10.1016/j.elecom.2012.02.023
(9) Wang, H.W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.; Zhang, Z. Y.;Yang, Y. Y.;Wu, H. Y. Mater. Chem. Phys. 2011, 130, 672. doi: 10.1016/j.matchemphys.2011.07.043
(10) Gujar, T. P.; Shinde, V. R.; Lokhande, C. D.; Han, S. H.J. Power Sources 2006, 161, 1479. doi: 10.1016/j.jpowsour.2006.05.036
(11) Yuan, D. S.; Zeng, J. H.; Kristian, N.;Wang, Y.;Wang, X.Electrochem. Commun. 2009, 11, 313. doi: 10.1016/j.elecom.2008.11.041
(12) Patel, M. N.;Wang, X.; Slanac, D. A.; Ferrer, D. A.; Dai, S.;Johnston, K. P.; Stevenson, K. J. J. Mater. Chem. 2012, 22,3160. doi: 10.1039/c1jm14513d
(13) Chen, Y. M.; Cai, J. H.; Huang, Y. S.; Lee, K. Y.; Tsai, D. S.;Tiong, K. K. Nanotechnology 2011, 22, 355708. doi: 10.1088/0957-4484/22/35/355708
(14) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. doi: 10.1039/b813846j
(15) Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M.W. Nat. Nanotechnol. 2011, 6, 232. doi: 10.1038/nnano.2011.13
(16) Li, Q.;Wang, Z. L.; Li, G. R.; Guo, R. L.; Ding, X. Y.; Tong, X.Nano Lett. 2012, 12, 3803. doi: 10.1021/nl301748m
(17) Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. Adv. Mater. 2010, 22, 347. doi: 10.1002/adma.v22:3
(18) Gupta, V.; Gupta, S.; Miura, N. J. Power Sources 2010, 195,3757. doi: 10.1016/j.jpowsour.2009.12.059
(19) Wang, H. L.; Gao, Q. M.; Jiang, L. Small 2011, 7, 2454.
(20) Zhang, G. Q.;Wu, H. B.; Hoster, H. E.; Chan-Park, M. B.; Lou,X.W. Energy Environ. Sci. 2012, 5, 9453. doi: 10.1039/c2ee22572g
(21) Yuan, C.; Li, J. H.; Zhang, L.; Shen, X. L.; Lou, X.W. Adv. Funct. Mater. 2012, 22, 4592. doi: 10.1002/adfm.v22.21
(22) Xing,W.; Qiao, S. Z.;Wu, X. Z.; Gao, X. L.; Zhou, J.; Zhuo, S.P.; Hartono, S. B.; Hulicova-Jurcakova, D. J. Power Sources2011, 196, 4123. doi: 10.1016/j.jpowsour.2010.12.003
(23) Grdeń, M.; Alsabet, M.; Jerkiewicz, G. ACS Appl. Mater. Interfaces 2012, 4, 3012. doi: 10.1021/am300380m
(24) Xia, X.; Tu, J.; Zhang, Y.;Wang, X.; Gu, C.; Zhao, X. B.; Fan,H. J. ACS Nano 2012, 6, 5531. doi: 10.1021/nn301454q
(25) Wang, X.; Han, X.; Lim, M.; Singh, N.; Gan, C. L.; Jan, M.;Lee, P. S. J. Phys. Chem. C 2012, 116, 12448. doi: 10.1021/jp3028353
(26) Chien, H. C.; Cheng,W. Y.;Wang, Y. H.; Lu, S. Y. Adv. Funct. Mater. 2012, 22, 5038. doi: 10.1002/adfm.v22.23

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[4] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. Chim. Sin., 2017, 33(4): 787-794.
[5] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[6] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[7] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[8] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[9] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[10] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[11] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. Chim. Sin., 2017, 33(1): 198-210.
[12] LIU Zhao-Xin, LI Wei-Bin. Catalytic Activity and Deactivation of Toluene Combustion on Rod-Like Copper-Manganese Mixed Oxides[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1795-1800.
[13] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1593-1603.
[14] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[15] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.