Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (07): 1534-1540    DOI: 10.3866/PKU.WHXB201304252
SOFT MATTER     
A Highly Viscoelastic Anionic Wormlike Micellar System
XIE Dan-Hua1, ZHAO Jian-Xi1, LIU Lin1, YOU Yi1, WEI Xi-Lian2
1 Institute of Colloid and Interface Chemistry, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China;
2 Department of Chemistry, College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
Download:   PDF(732KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The rheological behavior of carboxylate gemini surfactant O,O'-bis(sodium 2- tetradecylcarboxylate)-p-dibenzenediol (referred to as C14Φ2C14) with a concentration of 140 mmol·L-1 in aqueous solution in the presence of 100 mmol·L-1 NaBr was investigated by frequency sweep and steady rate sweep measurements. The solution showed the characteristics of a Maxwell fluid with a single stress relaxation time at low shear frequencies. Analysis by the living polymer model indicated that C14Φ2C14 formed long (3.6-6.8 μm) wormlike micelles at 25℃, which were observed by cryo-transmission electron microscopy (cryo-TEM). The micelles were entangled with each other, resulting in a very viscous solution (the zero-shear viscosity was as high as 1.10×104 Pa·s) that looked like a gel. On raising the temperature to 70℃, the relative viscosity was still as high as 1.8×104, which is very rare for anionic wormlike micelle systems. The flow activation energy (Ea) was estimated to be (141±5) kJ·mol-1. The size distribution of C14Φ2C14 was determined by dynamic light scattering. Large aggregates with a size of ~100 nm were observed at low concentrations of 5-10 mmol·L-1. These large aggregates readily transformed into rodlike and then wormlike micelles as the surfactant concentration increased.



Key wordsCarboxylate gemini surfactant      p-Dibenzenediol spacer      Wormlike micelle      High viscoelasticity      Temperature effect      Micelle formation mechanism     
Received: 04 February 2013      Published: 25 April 2013
MSC2000:  O648  
Fund:  

The project was supported by the National Natural Science Foundation of China (20873024, 21273040).

Corresponding Authors: ZHAO Jian-Xi     E-mail: jxzhao.colloid@fzu.edu.cn
Cite this article:

XIE Dan-Hua, ZHAO Jian-Xi, LIU Lin, YOU Yi, WEI Xi-Lian. A Highly Viscoelastic Anionic Wormlike Micellar System. Acta Phys. Chim. Sin., 2013, 29(07): 1534-1540.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201304252     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I07/1534

(1) Dreiss, C. A. Soft Matter 2007, 3, 956. and references therein.doi: 10.1039/b705775j
(2) Yang, J. Curr. Opin. Colloid Interface Sci. 2002, 7, 276. andreferences therein. doi: 10.1016/S1359-0294(02)00071-7
(3) Maitland, G. C. Curr. Opin. Colloid Interface Sci. 2000, 5, 301.doi: 10.1016/S1359-0294(00)00069-8
(4) Magid, L. J.; Li, Z.; Butler, P. D. Langmuir 2000, 16, 10028.doi: 10.1021/la0006216
(5) Hassan, P. A.; Raghavan, S. R.; Kaler, E.W. Langmuir 2002,18, 2543. doi: 10.1021/la011435i
(6) Arleth, L.; Bergstrom, M.; Pedersen, J. S. Langmuir 2002, 18,5343. doi: 10.1021/la015693r
(7) Nakamura, K.; Shikata, T. Langmuir 2006, 22, 9853. doi: 10.1021/la061031w
(8) Acharya, D. P.; Sato, T.; Kaneko, M.; Singh, Y.; Kunieda, H.J. Phys. Chem. B 2006, 110, 754. doi: 10.1021/jp054631x
(9) Lu, T.; Xia, L. G.;Wang, X. D.;Wang, A. Q.; Zhang, T.Langmuir 2011, 27, 9815. doi: 10.1021/la2018709
(10) Mu, J. H.; Li, G. Z. Chem. Phys. Lett. 2001, 345, 100. doi: 10.1016/S0009-2614(01)00799-0
(11) Mu, J. H.; Li, G. Z. Colloid Polym. Sci. 2001, 279, 872. doi: 10.1007/s003960100508
(12) Mu, J. H.; Li, G. Z.; Jia, X. L.;Wang, H. X.; Zhang, G. Y.J. Phys. Chem. B 2002, 106, 11685. doi: 10.1021/jp014096a
(13) Mu, J. H.; Li, G. Z.;Wang, Z.W. Rheol. Acta 2002, 41, 493.doi: 10.1007/s00397-002-0246-y
(14) Mu, J. H.; Li, G. Z.;Wang, Z.W.; Zheng, L. Q.; Liao, G. Z.;Huang, L. J. Disper. Sci. Technol. 2001, 22, 421. doi: 10.1081/DIS-100107851
(15) Acharya, D. P.; Kunieda, H.; Shiba, Y.; Aratani, K. J. Phys. Chem. B 2004, 108, 1790.
(16) Song, B. L.; Hu, Y. F.; Zhao, J. X. J. Colloid Interface Sci. 2009,333, 820. doi: 10.1016/j.jcis.2009.02.030
(17) Song, B. L.; Hu, Y. F.; Song, Y. M.; Zhao, J. X. J. Colloid Interface Sci. 2010, 341, 94.
(18) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B.W. Journal of the Chemical Society-Faraday Transactions II 1976, 72, 1525.doi: 10.1039/f29767201525
(19) Xie, D. H.; Zhao, J. X. Langmuir 2013, 29, 545.
(20) Granek, R.; Cates, M. E. J. Chem. Phys. 1992, 96, 4758. doi: 10.1063/1.462787
(21) Oda, R.; Narayanan, J.; Hassan, P. A.; Manohar, C.; Salkar, R.A.; Kern, F.; Candau, S. J. Langmuir 1998, 14, 4364. doi: 10.1021/la971369d
(22) Raghavan, S. R.; Kaler, E.W. Langmuir 2001, 17, 300. doi: 10.1021/la0007933
(23) Khatory, A.; Lequeux, F.; Kern, F.; Candau, S. J. Langmuir1993, 9, 1456. doi: 10.1021/la00030a005
(24) Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. J. Colloid Interface Sci. 2007, 311, 276. doi: 10.1016/j.jcis.2007.02.050
(25) Candau, S. J.; Hirsch, E.; Zana, R.; Delsanti, M. Langmuir1989, 5, 1225. doi: 10.1021/la00089a018
(26) Fischer, P.; Rehage, H. Langmuir 1997, 13, 7012. doi: 10.1021/la970571d

[1] ZHOU Ping-Ping, XI Xi, SONG Bing-Lei, PEI Xiao-Mei, CUI Zheng-Gang. Rheological Behavior of Trimeric Anionic Surfactant/Cationic Additive Mixed Systems[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2309-2317.
[2] TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming. Effects of Particle Size and Temperature on Surface Thermodynamic Functions of Cubic Nano-Cu2O[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2678-2684.
[3] PAN Shan-Shan, WANG Li-Ming. The Atmospheric Oxidation Mechanism of o-Xylene Initiated by Hydroxyl Radicals[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2259-2268.
[4] HAN Yi-Xiu, ZHOU Hong, WEI Yong-Qiang, MEI Yong-Jun, WANG Hang. Effect of TBAB/KCl on Constructing Anionic Wormlike Micelles[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2124-2130.
[5] MEI Yong-Jun, HAN Yi-Xiu, ZHOU Hong, YAO Lin, JIANG Bo. Synergism between Hydrophobically Modified Polyacrylic Acid and Wormlike Micelles[J]. Acta Phys. Chim. Sin., 2012, 28(07): 1751-1756.
[6] ZHAO Jian-Xi, YANG Duo-Ping. Highly Viscoelastic Worm-Like Micelle Solution of Sodium Hexadecyl Sulfate Induced by Bolaform Counterions[J]. Acta Phys. Chim. Sin., 2012, 28(05): 1218-1222.
[7] PEI Xiao-Mei, ZHAO Jian-Xi, WEI Xi-Lian. Effect of Sodium Salicylate on the Formation and Properties of Wormlike Micelles in Aqueous Cationic Gemini Surfactant Solutions[J]. Acta Phys. Chim. Sin., 2011, 27(04): 913-917.
[8] WANG Wen-qing; MIN Wei; GONG Yan. Temperature- induced Phase Transitions in Chiral Amino Acids——Search of Spontaneous Parity- Breaking and Restoration[J]. Acta Phys. Chim. Sin., 2005, 21(10): 1186-1194.
[9] MA Yan-hua; JIANG Rong; ZHAO Jian-xi. Surface Adsorption and Micelle Formation of C9pPHCNa and C10TABr Mixed Aqueous Solutions[J]. Acta Phys. Chim. Sin., 2005, 21(08): 939-943.
[10] WANG Wen-qing; GONG Yan; YAO Nan. Temperature Effect on Molecular Chirality:X-ray Diffraction and Neutron Diffraction Studies of D-alanine[J]. Acta Phys. Chim. Sin., 2005, 21(07): 774-781.
[11] Lu Dong-Yun;Wen Hao;Liu Hui-Zhou;Xu Zhi-Hong. Temperature Effects on Block Copolymer Micelle Based on the Scaling Model[J]. Acta Phys. Chim. Sin., 2004, 20(01): 38-42.
[12] Xiong Xing-Min,Yang Ju-Hua,Ye Mei-Ling,Zhang Ying-Jiu,Shi Liang-He. Study of Temperature Effect of Micellar Solutions of PSDMS Block Copolymer in n-Heptane by Positron Annihilation[J]. Acta Phys. Chim. Sin., 1995, 11(06): 541-546.