Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (07): 1515-1523    DOI: 10.3866/PKU.WHXB201304261
ELECTROCHEMISTRY AND NEW ENERGY     
Sulfonated Poly(aryl ether ketone) on Side Chain/Sulfonated Poly(vinyl alcohol) Composite Proton Exchange Membrane for Direct Methanol Fuel Cells
CHENG Hai-Long1, XU Jing-Mei1, WANG Zhe1,2, REN Chun-Li1, BAI Hong-Wei1, ZHAO Cheng-Ji3, ZHANG Hui-Xuan1,2
1 Engineering Research Center of Synthetic Resin and Special Chemical Fiber, Changchun University of Technology, Changchun 130012, P. R. China;
2 Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China;
3 Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China
Download:   PDF(2442KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Poly(aryl ether ketone)/sulfated poly(vinyl alcohol) (S-SPAEK/SPVA) composite membranes with different mass fractions of SPVA were prepared by solution casting using highly sulfonated side-chaintype sulfonated poly(aryl ether ketone) and sulfated poly(vinyl alcohol) as raw materials. Fourier transform infrared (FTIR) spectroscopy confirmed the structure of the S-SPAEK/SPVA composite membranes. Scanning electron microscope (SEM) images showed that SPVA was uniformly dispersed in an S-SPAEK polymer matrix. The uptake and swelling behavior, water retention capacity, methanol permeability, and proton conductivity of the composite membrane were investigated systematically. The performance testing of the composite membranes revealed that thermal stability and water absorption and retention capabilities were improved by introduction of SPVA. The methanol permeability of S-SPAEK/SPVA composite membranes decreased as the content of SPVA increased because the hydroxyl groups could effectively obstruct diffusion of methanol molecules. The methanol diffusion coefficients of the composite membranes decreased from 7.9×10-7cm2·s-1 for S-SPAEK/SPVA5 to 1.3×10-7 cm2·s-1 for S-SPAEK/SPVA30; considerably lower than 11.5×10-7 cm2·s-1 for the pure S-SPAEK membrane. The water absorption and retention capabilities increased as the numbers of hydrophilic groups increased by introduction of SPVA. As a result, the proton conductivity of the composite membranes increased with increasing water absorption and retention capabilities according to the Vehicle and Grotthuss mechanisms. The flexible chain segment of SPVA interacted strongly with the pendant chain of S-SPAEK, aiding hydrophilic/ hydrophobic separation, and improving the proton conductivity of the composite membranes. The proton conductivity of the S-SPAEK/SPVA30 composite membrane reached 0.071 and 0.095 S·cm-1 at 25 and 80℃, respectively. These results show that S-SPAEK/SPVA composite membranes are promising for application in direct methanol fuel cells.



Key wordsSulfonated poly(aryl ether ketone)      Sulfated poly(vinyl alcohol)      Composite membrane      Proton conductivity      Methanol permeability     
Received: 26 December 2012      Published: 26 April 2013
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51273024) and Key Project of Jilin Provincial Department of Education, China (2012103).

Cite this article:

CHENG Hai-Long, XU Jing-Mei, WANG Zhe, REN Chun-Li, BAI Hong-Wei, ZHAO Cheng-Ji, ZHANG Hui-Xuan. Sulfonated Poly(aryl ether ketone) on Side Chain/Sulfonated Poly(vinyl alcohol) Composite Proton Exchange Membrane for Direct Methanol Fuel Cells. Acta Phys. Chim. Sin., 2013, 29(07): 1515-1523.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201304261     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I07/1515

(1) Park, C. H.; Lee, C. H.; Guiver, M. D.; Lee, Y. M. Prog. Polym. Sci. 2011, 36, 1443. doi: 10.1016/j.progpolymsci.2011.06.001
(2) Hac1velioglu, F.; Ozden, S.; Celik, S. U.; Yesilot, S.; Bozkurt,A. J. Mater. Chem. 2011, 21, 1020. doi: 10.1039/c0jm01466d
(3) Tripathi, B. P.; Mahendra, K.; Shahi, V. K. J. Membr. Sci. 2009,327, 145. doi: 10.1016/j.memsci.2008.11.014
(4) Zhou, S. H.; Kim, D. Electrochim. Acta 2012, 63, 238.doi: 10.1016/j.electacta.2011.12.098
(5) Chen, Y. L.; Meng, Y. Z.; Hay, A. S. Macromolecules 2005, 38,3564. doi: 10.1021/ma047591o
(6) Fang, J. H.; Zhai, F. X.; Guo, X. X.; Xu, H. J.; Okamoto, K. I.J. Mater. Chem. 2007, 17, 1102. doi: 10.1039/b613561g
(7) Wang, G.; Xiao, G. Y.; Yan, D. Y. J. Membr. Sci. 2011, 369, 388.doi: 10.1016/j.memsci.2010.12.028
(8) Xu, T.W.;Wu, D.;Wu, L. Prog. Polym. Sci. 2008, 33, 894.doi: 10.1016/j.progpolymsci.2008.07.002
(9) Deng, H. N.;Wang, Y. X. Acta Phys. -Chim. Sin. 2007, 23,1235. [邓会宁, 王宇新. 物理化学学报, 2007, 23, 1235.]doi: 10.3866/PKU.WHXB20070818
(10) Wang, Z.; Ni, H. Z.; Zhao, C. J.; Li, X. F.; Zhang, G., Shao, K.;Na, H. J. Membr. Sci. 2006, 285, 239. doi: 10.1016/j.memsci.2006.08.038
(11) Kim, D. S.; Robertson, G. P.; Guiver, M. D. Macromolecules2008, 41, 2126. doi: 10.1021/ma7027215
(12) Lafitte, B.; Jannasch, P. Adv. Funct. Mater. 2007, 17, 2823.
(13) Asano, N.; Aoki, M.; Suzuki, S.; Miyatake, K.; Uchida, H.J. Am. Chem. Soc. 2006, 128, 1762. doi: 10.1021/ja0571491
(14) Yoshimura, K.; Iwasaki, K. Macromolecules 2009, 42, 9302.doi: 10.1021/ma901953e
(15) Yang, T. J. Membr. Sci. 2009, 342, 221. doi: 10.1016/j.memsci.2009.06.045
(16) Pivovar, B. S.;Wang, Y.; Cussler, E. L. J. Membr. Sci. 1999,154, 155. doi: 10.1016/S0376-7388(98)00264-6
(17) Wang, Z.;Wu, Q. H.; Ni, H. Z.; Zhang, M. Y.; Zhang, H. X.J. Appl. Polym. Sci. 2011, 120, 914. doi: 10.1002/app.v120.2
(18) Tseng, C. Y.; Ye, Y. S.; Kao, K. Y.; Joseph, J.; Shen,W. C.; Rick,J.; Hwang, B. J. Int. J. Hydrog. Energy 2011, 36, 936.
(19) Gu, S.; He, G. H.;Wu, X. M.; Guo, Y. J.; Liu, H. J.; Peng, L.;Xiao, G. K. J. Membr. Sci. 2008, 312, 48. doi: 10.1016/j.memsci.2007.12.053
(20) Barbora, L.; Acharya, S.; Verma, A. Macromol. Symp. 2009,277, 177. doi: 10.1002/masy.v277:1
(21) Schuster, M. F. H.; Meyer,W. H.; Schuster, M.; Kreuer, K. D.Chem. Mater. 2004, 16, 329. doi: 10.1021/cm021298q
(22) Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem. Rev. 2004, 104, 4637. doi: 10.1021/cr020715f
(23) Wang, F.; Hickner, M. A.; Kim, Y. S.; Zawodzinski, T. A.;McGrath, J. E. J. Membr. Sci. 2002, 197, 231. doi: 10.1016/S0376-7388(01)00620-2
(24) Zhang, Q.; Zhang, Q. F.; Zhang, S. B.; Li, S. H. J. Membr. Sci.2010, 354, 23. doi: 10.1016/j.memsci.2010.02.068
(25) Ludue, G. A.; Kuhne, T. D.; Sebastiani, D. Chem. Mater. 2011,23, 142.
(26) Spohr, E.; Commer, P.; Kornyshev, A. A. J. Phys. Chem. B 2002,106, 10560. doi: 10.1021/jp020209u
(27) Wu, H.;Wang, Y. X.;Wang, S. C. Poly. Mater. Sci. Eng. 2003,19, 172. [吴洪, 王宇新, 王世昌. 高分子材料科学与工程,2003, 19, 172.]

[1] HOU Hong-Ying. Recent Research Progress in Alkaline Polymer Electrolyte Membranes for Alkaline Solid Fuel Cells[J]. Acta Phys. Chim. Sin., 2014, 30(8): 1393-1407.
[2] HAN Shuai-Yuan, YUE Bao-Hua, YAN Liu-Ming. Research Progress in the Development of High-Temperature Proton Exchange Membranes Based on Phosphonic Acid Group[J]. Acta Phys. Chim. Sin., 2014, 30(1): 8-21.
[3] WEN Sheng, GONG Chun-Li, TSAI Fang-Chang, YEH Jen-Taut. Properties of SPES/AlOOH Composite Proton Exchange Membranes[J]. Acta Phys. Chim. Sin., 2011, 27(08): 1886-1892.
[4] GONG Chun-Li, ZHOU Yi, YAN Li-Cheng, WEN Sheng, ZHENG Gen-Wen. Properties of SPES/PWA/SiO2 Composite Proton Exchange Membranes[J]. Acta Phys. Chim. Sin., 2010, 26(11): 2967-2974.
[5] ZHENG Gen-Wen, GONG Chun-Li, WEN Sheng, ZHOU Huan-Bo, XIE Xiao-Lin. Preparation and Properties of Sulfonated Poly(ether sulfone)/Boron Phosphate Composite Proton Exchange Membranes[J]. Acta Phys. Chim. Sin., 2009, 25(03): 575-582.
[6] FENG Hua-Jun; CHEN Yuan;DAI Ke-Hua; SONG Zhao-Shuang; MA Jian-Wei; QI Lu. Preparation and Characterization of a Novel Kind of Polymer Electrolyte Composite Membrane for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2007, 23(12): 1922-1926.
[7] DENG Hui-Ning; WANG Yu-Xin. Preparation and Properties of Proton Conducting Composite Membranes from Sulfonated Poly(phthalazinone ether keton) and Phosphotungstic Acid[J]. Acta Phys. Chim. Sin., 2007, 23(08): 1235-1240.
[8] DENG Hui-Ning;WANG Yu-Xin . Sulfonated Poly(phthalazinones) Membranes For Direct Methanol Fuel Cell[J]. Acta Phys. Chim. Sin., 2007, 23(02): 187-191.
[9] CHEN Yu; TANG Ya-Wen; LIU Chang-Peng; XING Wei; LU Tian-Hong. Research Progress on Proton Exchange Membranes for Direct Methanol Fuel Cell[J]. Acta Phys. Chim. Sin., 2005, 21(04): 458-462.
[10] Deng Hui-Ning;Li Lei;Xu Li;Wang Yu-Xin. Comparison on Properties of Membranes for Direct Methanol Fuel Cell[J]. Acta Phys. Chim. Sin., 2004, 20(11): 1372-1375.
[11] Du Jun;Wu Ling;Tao Chang-Yuan;Sun Cai-Xin. Preparation and Characterization of Fe3O4/PVDF Magnetic Composite Membrane[J]. Acta Phys. Chim. Sin., 2004, 20(06): 598-601.