Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (07): 1467-1478    DOI: 10.3866/PKU.WHXB201304262
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Reaction Mechanism of Toluene Methylation with Dimethyl Carbonate or Methanol Catalyzed by H-ZSM-5
LI Ling-Ling1, Janik J. Michael2,3, NIE Xiao-Wa1,4, SONG Chun-Shan1,2,3, GUO Xin-Wen1
1 State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China;
2 EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA;
3 Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA;
4 Department of Chemical & Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
Download:   PDF(4452KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Para-xylene is an important petrochemical that can be produced by the methylation of toluene. Here, the mechanism of toluene methylation with dimethyl carbonate (DMC) or methanol catalyzed by H-ZSM-5 was studied using the“our own N-layered integrated molecular orbital+molecular mechanics” (ONIOM) in combination with density functional theory (DFT) methods. The adsorption of reactants and desorption of products are considered, and the structures of important intermediates and transition states are described. Computational rate constants are used to estimate the kinetic activity of toluene methylation reactions. The reaction mechanism of toluene methylation with DMC and that with methanol catalyzed by H-ZSM-5 differ. Toluene methylation with DMC involves full decomposition of DMC prior to methylation to form xylene isomers. In contrast, methanol is more active than DMC as the methylation reagent in toluene methylation. The stepwise and concerted paths of toluene methylation with methanol have similar intrinsic activation energies. At 773 K, the stepwise path has a higher rate constant than the concerted one. For toluene methylation with both reagents, para-xylene formation is kinetically preferred, whereas meta-xylene is the lowest-energy product. The results of our calculations agree well with experimental observations.



Key wordsDensity functional theory      ONIOM      Toluene methylation      Dimethyl carbonate      Methanol      H-ZSM-5     
Received: 29 January 2013      Published: 26 April 2013
MSC2000:  O641  
Fund:  

The project was supported by the Program for New Century Excellent Talent in University, China (NCET-04-0268), Plan 111 Project of the Ministry of Education of China, and High Performance Computing Department of Network and Information Center, Dalian University of Technology, China.

Corresponding Authors: Janik J. Michael, GUO Xin-Wen     E-mail: mjanik@engr.psu.edu;guoxw@dlut.edu.cn
Cite this article:

LI Ling-Ling, Janik J. Michael, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Toluene Methylation with Dimethyl Carbonate or Methanol Catalyzed by H-ZSM-5. Acta Phys. -Chim. Sin., 2013, 29(07): 1467-1478.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201304262     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I07/1467

(1) Zhu, Z. R.; Chen, Q. L.; Xie, Z. K.; Yang,W. M.; Li, C.Microporous Mesoporous Mat. 2006, 88, 16. doi: 10.1016/j.micromeso.2005.08.021
(2) Inagaki, S.; Kamino, K.; Kikuchi, E.; Matsukata, M. Appl. Catal. A: Gen. 2007, 318, 22. doi: 10.1016/j.apcata.2006.10.036
(3) Zhao, Y.; Tan,W.;Wu, H. Y.; Zhang, A. F.; Liu, M.; Li, G. M.;Wang, X. S.; Song, C. S.; Guo, X.W. Catal. Today 2011, 160,179. doi: 10.1016/j.cattod.2010.05.036
(4) Xue, B.; Li, Y. X.; Deng, L. J. Catal. Commun. 2009, 10, 1609.doi: 10.1016/j.catcom.2009.04.028
(5) Tan,W.; Zhao, Y.;Wu, H. Y.;Wang, X. S.; Guo, X.W. Acta Petrolei Sinica 2011, 27, 719. [谭伟, 赵岩, 吴宏宇, 王祥生, 郭新闻. 石油学报, 2011, 27, 719.]
(6) Liu, S. B. Acta Phys. -Chim. Sin. 2009, 25, 590. [刘述斌. 物理化学学报, 2009, 25, 590.] doi: 10.3866/PKU.WHXB20090332
(7) Sun, H.; Mumby, S. J.; Maple, J. R.; Hagler, A. T. J. Phys. Chem. 1995, 99, 5873. doi: 10.1021/j100016a022
(8) Fu, Y. C.; Zhu, H. Y.; Shen, J. Y. Thermochim. Acta 2005, 434,88. doi: 10.1016/j.tca.2005.01.021
(9) Kim,W. B.; Kim, Y. G.; Lee, J. S. Appl. Catal. A: Gen. 2000,194, 403. doi: 10.1016/S0926-860X(99)00386-5
(10) Wang,W.; Seiler, M.; Hunger, M. J. Phys. Chem. B 2001, 105,12553. doi: 10.1021/jp0129784
(11) Ivanova, I. I.; Corma, A. J. Phys. Chem. B 1997, 101, 547.doi: 10.1021/jp961468k
(12) Corma, A.; Llopis, F.; Viruela, P.; Zicovichwilson, C. J. Am. Chem. Soc. 1994, 116, 134. doi: 10.1021/ja00080a016
(13) Corma, A.; Sastre, G.; Viruela, P. M. J. Mol. Catal. A: Chem.1995, 100, 75. doi: 10.1016/1381-1169(95)00129-8
(14) Mirth, G.; Lercher, J. A. J. Phys. Chem. 1991, 95, 3736.doi: 10.1021/j100162a055
(15) Vos, A. M.; Rozanska, X.; Schoonheydt, R. A.; van Santen, R.A.; Hutschka, F.; Hafner, J. J. Am. Chem. Soc. 2001, 123, 2799.doi: 10.1021/ja001981i
(16) Maseras, F.; Morokuma, K. J. Comput. Chem. 1995, 16, 1170.
(17) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.;Frisch, M. J. J. Mol. Struct. -Theochem 1999, 462, 1.doi: 10.1016/S0166-1280(98)00475-8
(18) Nie, X.W.; Janik, J. M.; Guo, X.W.; Song, C. S. J. Phys. Chem. C 2012, 116, 4071. doi: 10.1021/jp209337m
(19) Maihom, T.; Boekfa, B.; Sirijaraensre, J.; Nanok, T.; Probst, M.;Limtrakul, J. J. Phys. Chem. C 2009, 113, 6654. doi: 10.1021/jp809746a
(20) Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier,W. M.J. Phys. Chem. 1981, 85, 2238. doi: 10.1021/j150615a020
(21) Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier,W. M.Nature 1978, 272, 437. doi: 10.1038/272437a0
(22) Vankoningsveld, H.; Vanbekkum, H.; Jansen, J. C. Acta Crystallogr., Sect. B Struct. Sci. 1987, 43, 127. doi: 10.1107/S0108768187098173
(23) Zhang, J.; Zhou, D. H.; Ni, D. Chin. J. Catal. 2008, 29, 715.[张佳, 周丹红, 倪丹. 催化学报, 2008, 29, 715.]
(24) Li, J. H.; Zhou, D. H.; Ren, J. Acta Phys. -Chim. Sin. 2011, 27,1393. [李惊鸿, 周丹红, 任珏. 物理化学学报, 2011, 27,1393.] doi: 10.3866/PKU.WHXB20110631
(25) Zuo, S. Y.; Zhou, D. H.; Ren, J.;Wang, F. J. Chin. J. Catal.2012, 33, 1367. [左士颖, 周丹红, 任珏, 王凤娇. 催化学报, 2012, 33, 1367.]
(26) Rappe, A. K.; Upton, T. H. J. Am. Chem. Soc. 1992, 114, 7507.doi: 10.1021/ja00045a026
(27) Van Speybroeck, V.; Van der Mynsbrugge, J.; Vandichel, M.;Hemelsoet, K.; Lesthaeghe, D.; Ghysels, A.; Marin, B. G.;Waroquier, M. J. Am. Chem. Soc. 2011, 133, 888. doi: 10.1021/ja1073992
(28) Van der Mynsbrugge, J.; Visur, M.; Olsbye, U.; Beato, P.;Bjørgen, M.; Van Speybroeck, V.; Svelle, S. J. Catal. 2012, 292,201. doi: 10.1016/j.jcat.2012.05.015
(29) Vreven, T.; Morokuma, K. J. Comput. Chem. 2000, 21, 1419.
(30) Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008,10, 6615. doi: 10.1039/b810189b
(31) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
(32) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision A.02; Gaussian Inc.:Wallingford, CT, 2009.
(33) Dibenedetto, A.; Aresta, M.; Giannoccaro, P.; Pastore, C.; Papai,I.; Schubert, G. Eur. J. Inorg. Chem. 2006, 5, 908.
(34) Kirumakki, S. R.; Nagaraju, N.; Chary, K. V. R.; Narayanan, S.J. Catal. 2004, 221, 549. doi: 10.1016/j.jcat.2003.09.013
(35) Su, K.; Li, Z. H.; Cheng, B.W.; Liao, K.; Shen, D. X.;Wang, Y.F. J. Mol. Catal. A: Chem. 2010, 315, 60. doi: 10.1016/j.molcata.2009.08.027
(36) Aresta, M.; Dibenedetto, A.; Fracchiolla, E.; Giannoccaro, P.;Pastore, C.; Pápai, I.; Schubert, G. J. Org. Chem. 2005, 70,6177. doi: 10.1021/jo050392y
(37) Mazar, M. N.; Al-Hashimi, S.; Bhan, A.; Cococcioni, M.J. Phys. Chem. C 2012, 116, 19385. doi: 10.1021/jp306003e
(38) Lee, C. C.; Gorte, R. J.; Farneth,W. E. J. Phys. Chem. B 1997,101, 3811. doi: 10.1021/jp970711s
(39) Li, L. L.; Nie, X.W.; Song, C. S.; Guo, X.W. Acta Phys. -Chim. Sin. 2013, 29, 754. [李玲玲, 聂小娃, 宋春山, 郭新闻. 物理化学学报, 2013, 29, 754.] doi: 10.3866/PKU.WHXB201302063
(40) Zeng, Z. H., Pan, G. S. Acta Phys. -Chim. Sin. 1989, 5, 145.[曾昭槐, 潘贵生. 物理化学学报, 1989, 5, 145.] doi: 10.3866/PKU.WHXB19890204
(41) Wang,W.; Buchholz, A.; Seiler, M.; Hunger, M. J. Am. Chem. Soc. 2003, 125, 15260. doi: 10.1021/ja0304244
(42) Vos, M. A.; Nulens, L. H. K.; Proft, D. F.; Schoonheydt, A. R.;Geerlings, P. J. Phys. Chem. B 2002, 106, 2026. doi: 10.1021/jp014015a
(43) Rabiu, S.; Al-Khattaf, S. Ind. Eng. Chem. Res. 2008, 47, 39.doi: 10.1021/ie071038o
(44) Ramakrishna, M.; Subhash, B.; Musti, S. R. Ind. Eng. Chem. Res. 1991, 30, 281. doi: 10.1021/ie00050a001
(45) Odedairo, T.; Balasamy, R. J.; Al-Khattaf, S. Ind. Eng. Chem. Res. 2011, 50, 3169. doi: 10.1021/ie1018904
(46) Vinek, H.; Lercher, J. J. Mol. Catal. 1991, 64, 23. doi: 10.1016/0304-5102(91)85125-L

[1] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[4] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[5] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[6] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 247-255.
[7] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[8] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[9] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[10] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[11] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[12] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[13] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[14] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[15] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.