Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (07): 1494-1500    DOI: 10.3866/PKU.WHXB201304271
ELECTROCHEMISTRY AND NEW ENERGY     
Synthesis and Electrochemical Performance of Microporous Carbon Using a Zinc(II)-Organic Coordination Polymer
QIAN Jia-Sheng, LIU Ming-Xian, GAN Li-Hua, LÜ Yao-Kang, CHEN Ling-Yan, YE Rui-Jie, CHEN Long-Wu
Department of Chemistry, Tongji University, Shanghai 200092, P. R. China
Download:   PDF(771KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Microporous carbon was prepared using a novel procedure based on a zinc(II)-organic coordination polymer. The polymer was prepared through the coordination interaction of zinc ions with tartaric acid, and then it was introduced into the open networks of resorcinol/formaldehyde (R/F) resol using hydrogen-bonding interactions. The R/F resol and zinc-organic coordination compound system copolymerized to produce an R/F and zinc-organic coordination copolymer. The copolymer was then heat-treated at 950℃ to decompose and evaporate zinc to fabricate microporous carbon materials. The carbon materials possessed relatively regular large micropores, with a specific surface area of up to 1260 m2·g-1 and a total pore volume of 0.63 cm3·g-1. The resultant microporous carbon materials were used as supercapacitor electrodes, exhibiting an equivalent series resistance of 0.46 Ω, and ideal capacitive behavior with a rectangular shape in cyclic voltammograms. Galvanostatic charge/discharge measurements of the carbon materials gave a specific capacitance of 196 F·g-1 at a current density of 1 A· g-1 and 137 F·g-1 at a large current density of 10 A·g-1. A high retention of 98% was measured for the long-term cycling stability (~1000 cycles) of the mesoporous carbon. Overall, the microporous carbon materials exhibited very good electrochemical performance. This study highlights the potential of well-designed microporous carbon materials as electrodes for diverse supercapacitor applications.



Key wordsMicroporous carbon      Synthesis      Electrochemical performance      Zinc(II)-organic coordination polymer      Hydrogen-bonding interaction      Electrode material     
Received: 17 January 2013      Published: 27 April 2013
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21207099, 21273162), Science and Technology Commission of Shanghai Municipality, China (11nm0501000, 12ZR1451100), Key Subject of Shanghai Municipal Education Commission, China (J50102), and Fundamental Research Funds for the Central Universities, China (2011KJ023).

Corresponding Authors: LIU Ming-Xian, GAN Li-Hua     E-mail: liumx@tongji.edu.cn;ganlh@tongji.edu.cn
Cite this article:

QIAN Jia-Sheng, LIU Ming-Xian, GAN Li-Hua, LÜ Yao-Kang, CHEN Ling-Yan, YE Rui-Jie, CHEN Long-Wu. Synthesis and Electrochemical Performance of Microporous Carbon Using a Zinc(II)-Organic Coordination Polymer. Acta Phys. -Chim. Sin., 2013, 29(07): 1494-1500.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201304271     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I07/1494

(1) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245. doi: 10.1021/cr020730k
(2) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; KluwerAcademic Plenum Publishers: New York, 1999; pp 1-200.
(3) Rolison, D. R. Science 2003, 299, 1698. doi: 10.1126/science.1082332
(4) Miller, J. R.; Simon, P. Science 2008, 321, 651. doi: 10.1126/science.1158736
(5) Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41, 797.doi: 10.1039/c1cs15060j
(6) Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845. doi: 10.1038/nmat2297
(7) Guo, P.; Gu, Y.; Lei, Z.; Cui, Y.; Zhao, X. S. Microporous Mesoporous Mat. 2012, 156, 176. doi: 10.1016/j.micromeso.2012.02.043
(8) Kyotani, T.; Ma, Z.; Tomita, A. Carbon 2003, 41, 1451. doi: 10.1016/S0008-6223(03)00090-3
(9) Wang, D.; Li, F.; Liu, M.; Lu, G.; Cheng, H. Angew. Chem. Int. Edit. 2008, 47, 373.
(10) Mahata, P.; Madras, G.; Natarajan, S. J. Phys. Chem. B 2006,110, 13759.
(11) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.;Wachter, J.;O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. doi: 10.1126/science.1067208
(12) Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem. Int. Edit.2009, 48, 7502. doi: 10.1002/anie.v48:41
(13) Robson, R. J. Chem. Soc., Dalton Trans. 2000, 3735.
(14) Jiang, H.; Liu, B.; Lan, Y.; Kuratani, K.; Akita, T.; Shioyama,H.; Zong, F.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11854. doi: 10.1021/ja203184k
(15) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc.2008, 130, 5390. doi: 10.1021/ja7106146
(16) Kajdos, A.; Kvit, A.; Jones, F.; Jagiello, J.; Yushin, G. J. Am. Chem. Soc. 2010, 132, 3252. doi: 10.1021/ja910307x
(17) Zhao, C.;Wang,W.; Yu, Z.; Zhang, H.;Wang, A.; Yang, Y.J. Mater. Chem. 2010, 20, 976. doi: 10.1039/b911913b
(18) Li, X.; Rong, J.;Wei, B. ACS Nano 2010, 4, 6039. doi: 10.1021/nn101595y
(19) Lin, R.; Taberna, P. L.; Chmiola, L.; Guay, D.; Gogotsi, Y.;Simon, P. J. Electrochem. Soc. 2009, 156, A7.
(20) Wu, Q.; He, K.; Mi, H.; Zhang, X. Mater. Chem. Phys. 2007,101, 367. doi: 10.1016/j.matchemphys.2006.06.013
(21) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. Phys. Chem. Chem. Phys. 2011, 13, 17615. doi: 10.1039/c1cp21910c
(22) Xie, K.; Qin, X.;Wang, X.;Wang, Y.; Tao, H.;Wu, Q.; Yang, L.;Hu, Z. Adv. Mater. 2012, 24, 347. doi: 10.1002/adma.201103872
(23) Tamon, H.; Ishizaka, H.; Araki, T.; Okazaki, M. Carbon 1998,36, 1257. doi: 10.1016/S0008-6223(97)00202-9
(24) Tseng, R. L.; Tseng, S. K. J. Colloid Interface Sci. 2005, 287,428. doi: 10.1016/j.jcis.2005.02.033
(25) Kim, K.; Park, S. Electrochim. Acta 2012, 78, 147. doi: 10.1016/j.electacta.2012.05.116
(26) Wu, X.; Hong, X.; Nan, J.; Luo, Z.; Zhang, Q.; Li, L.; Chen, H.;Hui, K. S. Microporous Mesoporous Mat. 2012, 160, 25. doi: 10.1016/j.micromeso.2012.04.013
(27) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. -Chim. Sin. 2010,26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010,26, 1254.] doi: 10.3866/PKU.WHXB20100330
(28) Pell,W. G.; Conway, B. E. J. Power Sources 1996, 63, 255. doi: 10.1016/S0378-7753(96)02525-6
(29) Cao, G. F.; Liao, Y.; Zhang, X. H.; Chen, J. H. Acta Phys. -Chim. Sin. 2011, 27, 1679. [曹国飞, 廖奕, 张小华,陈金华. 物理化学学报, 2011, 27, 1679.] doi: 10.3866/PKU.WHXB20110623
(30) Liu, C. L.;Wen, Y. H.; Cheng, J.; Guo, Q. G.; Cao, G. P.; Liu,L.; Yang, Y. S. Acta Phys. -Chim. Sin. 2005, 21, 786. [刘春玲,文越华, 程杰, 郭全贵, 曹高萍, 刘朗, 杨裕生. 物理化学学报, 2005, 21, 786.] doi: 10.3866/PKU.WHXB20050717

[1] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[2] Teng XUE,Lilu DONG,Ying ZHANG,Haihong WU. Green and Cost-Effective Preparation of Small-Sized ZSM-5[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 920-926.
[3] Yang ZHOU,Zhimin LI,Kai ZHENG,Gao LI. Controlled Synthesis of Au36(SR)24 (SR = SPh, SC6H4CH3, SCH(CH3)Ph, and SC10H7) Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 786-791.
[4] Hengwei WANG,Junling LU. Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1334-1357.
[5] Ping HE,Fanglong YUAN,Zifei WANG,Zhanao TAN,Louzhen FAN. Growing Carbon Quantum Dots for Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1250-1263.
[6] Jin-Long LIU,Liang-Zhen LIN,Jin-Feng HU,Ming-Jie BAI,Liang-Xian CHEN,Jun-Jun WEI,Li-Fu HEI,Cheng-Ming LI. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 92-98.
[7] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1865-1874.
[8] Pei-Yi LIAO,Chen ZHANG,Li-Jun ZHANG,Yan-Zhang YANG,Liang-Shu ZHONG,Xiao-Ya GUO,Hui WANG,Yu-Han SUN. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1672-1680.
[9] Qi-Tang FAN,Jun-Fa ZHU. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1288-1296.
[10] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[11] Xue-Jiao HU,Guan-Bin GAO,Ming-Xi ZHANG. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1324-1337.
[12] . Synthesis, Characterization, Spectroscopic Properties, and Luminescence Quenching Mechanism of a Pt(Ⅱ) Complex Decorated with a π-Conjugated TEMPO-Terpyridine Ligand System[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1390-1398.
[13] Mao-Mao RUAN,Le-Xin SONG,Qing-Shan WANG,Juan XIA,Zun YANG,Yue TENG,Zhe-Yuan XU. Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1033-1042.
[14] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[15] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.