Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (08): 1632-1638    DOI: 10.3866/PKU.WHXB201304281
Application of Time-Resolved Coherent Anti-Stokes Raman Scattering Technique on the Study of Photocatalytic Hydrogen Production Kinetics
LV Yong-Gang1,3, LI Zhi-Jun2, WU Li-Zhu2, WANG Peng1, FU Li-Min1, ZHANG Jian-Ping1
1 Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China;
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;
3 School of Physics, Peking University, Beijing 100871, P. R. China
Download:   PDF(694KB) Export: BibTeX | EndNote (RIS)      


Based on the laser pulse output from a femtosecond regenerative amplifier and optical parametric amplifier (OPA), a broadband time-resolved coherent anti-Stokes Raman scattering (CARS) setup was assembled. Using this setup, the relationship of hydrogen CARS spectra to its amount in a mixture with air and the relevant detection time-delay were studied. Hydrogen CARS spectra without nonresonant background interference were obtained by adjusting the detection time-delay. The observed CARS intensity exhibited a linear relationship with the square of hydrogen concentration, which is consistent with the theoretical prediction. The signal-to-noise ratio showed that when the pressure of hydrogen-air mixed gas was 0.1 MPa, the detection limit of our setup was less than 0.2%. Using this setup, the hydrogen production kinetics of a platinum(II) terpyridyl acetylide molecular-cobalt catalysttriethanolamine (TEOA) system was studied. The kinetic mechanism of hydrogen production was discussed by considering the effect of changing pH. The results indicate that a high proton concentration will reduce the hydrogen production efficiency. This can be attributed to the inhibition of hydrolysis of TEOA under acidic conditions, because it is the electron and proton donor in this hydrogen production system.

Key wordsCoherent anti-Stokes Raman scattering      Nonresonant background      Time-resolved spectrum      Photo-catalysis      Kinetics     
Received: 31 January 2013      Published: 28 April 2013
MSC2000:  O643  

The project was supported by the National Key Basic Research Program of China (973) (2009CB220008).

Corresponding Authors: FU Li-Min     E-mail:
Cite this article:

LV Yong-Gang, LI Zhi-Jun, WU Li-Zhu, WANG Peng, FU Li-Min, ZHANG Jian-Ping. Application of Time-Resolved Coherent Anti-Stokes Raman Scattering Technique on the Study of Photocatalytic Hydrogen Production Kinetics. Acta Phys. -Chim. Sin., 2013, 29(08): 1632-1638.

URL:     OR

(1) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.doi: 10.1039/b800489g
(2) Ghirardi, M. L.; Dubini, A.; Yu, J.; Maness, P. Chem. Soc. Rev.2009, 38, 52. doi: 10.1039/b718939g
(3) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(4) Ihara, M.; Nishihara, H.; Yoon, K. S.; Lenz, O.; Friedrich, B.;Nakamoto, H.; Kojima, K.; Honma, D.; Kamachi, T.; Okura, I.Photochem. Photobiol. 2006, 82, 677.
(5) Millsaps, J. F.; Bruce, B. D.; Lee, J.W.; Greenbaum, E.Photochem. Photobiol. 2001, 73, 630. doi: 10.1562/0031-8655(2001)073<0630:NPPPOH>2.0.CO;2
(6) Ihara, M.; Nakamoto, H.; Kamachi, T.; Okura, I.; Maedal, M.Photochem. Photobiol. 2006, 82, 1677.
(7) Komatsu, T.;Wang, R. M.; Zunszain, P. A.; Curry, S.; Tsuchida,E. J. Am. Chem. Soc. 2006, 128, 16297. doi: 10.1021/ja0656806
(8) Lubner, C. E.; Grimme, R.; Bryant, D. A.; Golbeck, J. H.Biochemistry 2010, 49, 404. doi: 10.1021/bi901704v
(9) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27 (9),2178. [敏世雄, 吕功煊. 物理化学学报, 2011, 27 (9), 2178.]doi: 10.3866/PKU.WHXB20110904
(10) Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25 (9),1829. [张晓艳, 崔晓莉. 物理化学学报, 2009, 25 (9), 1829.]doi: 10.3866/PKU.WHXB20090905
(11) Grimme, R. A.; Lubner, C. E.; Bryant, D. A.; Golbeck, J. H.J. Am. Chem. Soc. 2008, 130, 6308. doi: 10.1021/ja800923y
(12) Lee, J.W.; Greenbaum, E. Appl. Biochem. Biotechnol. 2003,105, 303.
(13) Maker, P. D.; Terhune, R.W. Phys. Rev. Lett. 1965, 137, 801.
(14) Moya, F.; Druet, S. A. J.; Taran, J. P. E. Opt. Commun. 1975, 13,169. doi: 10.1016/0030-4018(75)90034-6
(15) Kiefer, J.; Ewart, P. Energ. Combust. 2011, 37, 525.doi: 10.1016/j.pecs.2010.11.001
(16) Roy, S.; Meyer, T. R.; Lucht, R. P.; Belovich, V. M.; CorporanE.; Gord, J. R. Combust. Flame 2004, 138, 273. doi: 10.1016/j.combustflame.2004.04.012
(17) Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: NewYork, 2008; pp 473-508.
(18) Roy, S.; Gord, J. R.; Anil, K. P. Prog. Energ. Combust. 2010, 36,280. doi: 10.1016/j.pecs.2009.11.001
(19) Cheng, J. X.; Book, L. D.; Xie, X. S. Opt. Lett. 2001, 26, 1341.doi: 10.1364/OL.26.001341
(20) Volkmer, A.; Book, L. D.; Xie, X. S. Appl. Phys. Lett. 2002, 80,1505. doi: 10.1063/1.1456262
(21) Du, P.W.; Knowles, K.; Eisenberg, R. J. Am. Chem. Soc. 2008,130, 12576. doi: 10.1021/ja804650g
(22) Marrocco, M. J. Raman Spectrosc. 2009, 40, 741. doi: 10.1002/jrs.v40:7
(23) Marrocco, M. J. Raman Spectrosc. 2007, 38, 1064.
(24) Roy, S.; Meyer, T. R.; Gord, J. R. Appl. Phys. Lett. 2005, 87,264103. doi: 10.1063/1.2159576
(25) Kulatilaka,W. D.; Hsu, P. S.; Stauffer, H. U.; Gord, J. R.; Roy,S. Appl. Phys. Lett. 2010, 97, 81112. doi: 10.1063/1.3483871
(26) Zhang, D.;Wu, L. Z.; Zhou, L.; Han, X.; Yang, Q. Z.; Zhang, L.P.; Tung, C. H. J. Am. Chem. Soc. 2004, 126, 3440. doi: 10.1021/ja037631o

[1] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[2] Hui-Chang NIU,Dan JI,Nai-An LIU. Method for Optimizing the Kinetic Parameters for the Thermal Degradation of Forest Fuels Based on a Hybrid Genetic Algorithm[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2223-2231.
[3] Peng-Fei JING,Hui-Jun LIU,Qin ZHANG,Sheng-Yong HU,Lan-Lin LEI,Zhi-Yuan FENG. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1933-1940.
[4] Tian HE,Ke-Fen YUE,San-Ping CHEN,Chun-Sheng ZHOU,Ni YAN. Synthesis, Structure and Thermodynamics/Kinetics Analysis of Three Different Interpenetrating Zinc(Ⅱ) Coordination Architectures[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1397-1403.
[5] Zhao-Lei ZHENG,Zhu-Mei LÜ. Generation and Analysis for a Skeletal Chemical Kinetic Model of IC8H18 with Nitric Oxide in HCCI Combustion[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1151-1160.
[6] Qi-Liang HONG,Yi-Hui DONG,Wei ZHUANG,Chao RAO,Chang LIU. Kinetics and Thermodynamics of Lysozyme Adsorption on Mesoporous Titanium Dioxide[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 638-646.
[7] Pei-Zhi ZHANG,Mei-Jun YE,Wei-Lian HU,Jun WU. Kinetics of Acid-Catalyzed Smiles Rearrangement of 2, 6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 422-428.
[8] Huan-Feng TANG,Zai-Yin HUANG,Ming XIAO,Min LIANG,Li-Ying CHEN. An Investigation into the Reaction Kinetics of Cubic Nano-Cu2O in Theory and Experiment[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2891-2897.
[9] Xiang CHEN,Jian-Ming PAN,Yong-Sheng YAN. Adsorption of λ-Cyhalothrin onto Macroporous Polymer Foams Derived from Pickering High Internal Phase Emulsions Stabilized by Halloysite Nanotube Nanoparticles[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2794-2802.
[10] Long-Hui. NIE,Qiao. TAN,Wei. ZHU,Qi. WEI,Zhi-Kui. LIN. Fast Adsorption Removal of Congo Red on Hierarchically Porous γ-Al2O3 Hollow Microspheres Prepared by Microwave-Assisted Hydrothermal Method[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1815-1822.
[11] XU Zhen, CHEN Yu, ZHANG Zhao, ZHANG Jian-Qing. Progress of Research on Underpotential Deposition—— I. Theory of Underpotential Deposition[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1219-1230.
[12] LIANG Chu, LIANG Sheng, XIA Yang, HUANG Hui, GAN Yong-Ping, TAO Xin-Yong, ZHANG Wen-Kui. Progress in the Mg(NH2)2-2LiH Material for Hydrogen Storage[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 627-635.
[13] Jing. LI,Li-Zhen. CHEN,Jian-Long. WANG,Guan-Chao. LAN,Huan. HOU,Man. LI. Crystal Structure and Thermal Decomposition Kinetics of Byproduct of Synthesis of RDX: 3, 5-Dinitro-1-oxygen-3, 5-diazacyclohexane[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2049-2056.
[14] XIONG Hai-Ling, YANG Zhi-Min, LI Hang. Coupling Effects of Diffusive Model and Sticking Model on Aggregation Kinetics of Colloidal Particles:A Monte Carlo Simulation Study[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 413-422.
[15] SHEN Qi, FAN Ying-Ju, YIN Long, SUN Zhong-Xi. Two-Dimensional Continuous Online In situ ATR-FTIR Spectroscopic Investigation of Adsorption of Butyl Xanthate on CuO Surfaces[J]. Acta Phys. -Chim. Sin., 2014, 30(2): 359-364.