Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (07): 1566-1571    DOI: 10.3866/PKU.WHXB201304284
Roles of (001) and (101) Facets of Anatase TiO2 in Photocatalytic Reactions
WANG Xiang1,2, LI Ren-Gui1,2, XU Qian1, HAN Hong-Xian1, LI Can1
1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning Province, P. R. China;
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(1269KB) Export: BibTeX | EndNote (RIS)      


Single crystals of anatase TiO2 with exposed (001) and (101) facets were synthesized by a hydrothermal method. We carried out photocatalytic reduction reactions to deposit noble metals (Au, Ag, and Pt) and photocatalytic oxidation reactions to deposit metal oxides (PbO2 and MnOx) on the surface of TiO2. The deposited anatase TiO2 samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) to study the roles of the two facets of anatase TiO2 in photocatalytic reactions. The noble metals were selectively deposited on the exposed (101) facet, while metal oxides were selectively deposited on the exposed (001) facet. This result indicated that photogenerated electrons and holes mainly accumulated on the (101) and (001) facets, and then took part in photocatalytic reduction and oxidation reactions, respectively. These results also suggested that the simultaneous exposure of the two facets could facilitate charge separation. Therefore, it was proposed that the simultaneous exposure of two facets with different functions will be a new strategy to effectively promote photocatalytic reaction.

Key wordsTiO2      Anatase      Photocatalysis      Crystal facet      Charge separation     
Received: 03 April 2013      Published: 28 April 2013
MSC2000:  O643  

The project was supported by the National Natural Science Foudaton of China (21090341, 21061140361).

Corresponding Authors: LI Can     E-mail:
Cite this article:

WANG Xiang, LI Ren-Gui, XU Qian, HAN Hong-Xian, LI Can. Roles of (001) and (101) Facets of Anatase TiO2 in Photocatalytic Reactions. Acta Phys. Chim. Sin., 2013, 29(07): 1566-1571.

URL:     OR

(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(2) Liu, G.; Zhao, Y.; Sun, C.; Li, F.; Lu, G. Q.; Cheng, H. M.Angew. Chem. Int. Edit. 2008, 47, 5277.
(3) Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Angew. Chem. Int. Edit. 2008, 47, 1766.
(4) Dholam, R.; Patel, N.; Miotello, A. Int. J. Hydrog. Energy 2011,36, 6519. doi: 10.1016/j.ijhydene.2011.03.028
(5) Liu, F. S.;Wang, S.; Liu, L. L.; Du, H. Renewable and Sustainable Energy II, Pts 1-4; Trans. Tech. Publications Ltd.:Switzerland, 2012; Vol. 512-515, pp 1677-1682.
(6) Paracchino, A.; Laporte, V.; Sivula, K.; Gratzel, M.; Thimsen, E.Nat. Mater. 2011, 10, 456. doi: 10.1038/nmat3017
(7) Higashimoto, S.; Ushiroda, Y.; Azuma, M. Top. Catal. 2008, 47,148. doi: 10.1007/s11244-007-9026-3
(8) Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Science 2011, 331,746. doi: 10.1126/science.1200448
(9) Akurati, K. K.; Vital, A.; Dellemann, J. P.; Michalow, K.;Graule, T.; Fetti, D.; Baiker, A. Appl. Catal. B-Environ. 2008,79, 53. doi: 10.1016/j.apcatb.2007.09.036
(10) Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25, 1829.[张晓艳, 崔晓莉. 物理化学学报, 2009, 25, 1829.] doi: 10.3866/PKU.WHXB20090905
(11) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
(12) Wang, X.; Xu, Q.; Li, M. R.; Shen, S.;Wang, X. L.;Wang, Y.C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Angew. Chem. Int. Edit. 2012, 51, 13089. doi: 10.1002/anie.v51.52
(13) Giocondi, J. L.; Rohrer, G. S. J. Am. Ceram. Soc. 2003, 86,1182. doi: 10.1111/jace.2003.86.issue-7
(14) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638. doi: 10.1038/nature06964
(15) Liu, G.; Sun, C. H.; Yang, H. G.; Smith, S. C.;Wang, L. Z.; Lu,G. Q.; Cheng, H. M. Chem. Commun. 2010, 46, 755. doi: 10.1039/b919895d
(16) Pan, J.; Liu, G.; Lu, G. M.; Cheng, H. M. Angew. Chem. Int. Edit. 2011, 50, 2133. doi: 10.1002/anie.v50.9
(17) Liu, C.; Han, X. G.; Xie, S. F.; Kuang, Q.;Wang, X.; Jin, M. S.;Xie, Z. X.; Zheng, L. S. Chem. -Asian J. 2013, 8, 282. doi: 10.1002/asia.v8.1
(18) Ohno, T.; Sarukawa, K.; Matsumura, M. New J. Chem. 2002,26, 1167. doi: 10.1039/b202140d
(19) Taguchi, T.; Saito, Y.; Sarukawa, K.; Ohno, T.; Matsumura, M.New J. Chem. 2003, 27, 1304. doi: 10.1039/b304518h
(20) Murakami, N.; Kurihara, Y.; Tsubota, T.; Ohno, T. J. Phys. Chem. C 2009, 113, 3062. doi: 10.1021/jp809104t
(21) Farneth,W. E.; McLean, R. S.; Bolt, J. D.; Dokou, E.; Barteau,M. A. Langmuir 1999, 15, 8569. doi: 10.1021/la9908844
(22) Farneth,W. E.; Hotsenpiller, P. A. M.; Bolt, J. D.; Lowekamp, J.B.; Rohrer, G. S. Orientation Dependence of PhotochemicalReactions on TiO2 Thin Film Surfaces. In Abstracts of Papers of the American Chemical Society, University ofWashington,USA, Aug 23, 1998; Amercan Chemical Sociality:WashingtonDC, 1998; Vol. 216, U747-U747.
(23) Li, R.; Zhang, F.;Wang, D.; Yang, J.; Li, M.; Zhu, J.; Zhou, X.;Han, H.; Li, C. Nat. Commun. 2013, 4, 1432. doi: 10.1038/ncomms2401
(24) Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125,3082. doi: 10.1021/ja027751g
(25) Oku, M.; Hirokawa, K.; Ikeda, S. J. Electron. Spectrosc. 1975,7, 465. doi: 10.1016/0368-2048(75)85010-9
(26) Dicastro, V.; Polzonetti, G. J. Electron. Spectrosc. 1989, 48,117. doi: 10.1016/0368-2048(89)80009-X
(27) Foord, J. S.; Jackman, R. B.; Allen, G. C. Philos. Mag. A 1984,49, 657. doi: 10.1080/01418618408233293
(28) Hengerer, R.; Kavan, L.; Krtil, P.; Grätzel, M. J. Electrochem. Soc. 2000, 147, 1467. doi: 10.1149/1.1393379

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[3] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[4] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[5] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[6] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. Chim. Sin., 2017, 33(3): 602-610.
[7] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[8] WAN Xiu-Mei, WANG Li, GONG Xiao-Qing, LU Dan-Feng, QI Zhi-Mei. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2523-2531.
[9] LAN Hai, XIAO Xi, YUAN Shan-Liang, ZHANG Biao, ZHOU Gui-Lin, JIANG Yi. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2301-2309.
[10] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[11] HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2042-2051.
[12] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[13] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[14] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[15] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.