Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (10): 2079-2086    DOI: 10.3866/PKU.WHXB201305021
THERMALANALYSIS KINETICS ANDTHERMOKINETICS     
Effect of Drying Methods on the Structure and Thermal Decomposition Behavior of Ammonium Perchlorate/Graphene Composites
WANG Xue-Bao1, LI Jin-Qing1,2, LUO Yun-Jun1
1 School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China;
2 cademy of Ordnance Science, Beijing 100089, P. R. China
Download:   PDF(2190KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene hydrogels were prepared by the sol-gel method, and then used to prepare ammonium perchlorate (AP)/graphene composites by the incorporation of AP. The composites were dried naturally in air, freeze-dried, or dried with supercritical CO2. Scanning electron microscopy (SEM), elemental analyses (EA), and X-ray diffraction (XRD) were used to characterize the structure of the AP/graphene composites dried using different methods. Furthermore, the thermal decomposition behavior of the AP/graphene composites was investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis/infrared spectroscopy (TG-FTIR). Drying method had an obvious influence on the morphology of the AP/graphene composites; only the AP/graphene composites dried with supercritical CO2 showed similar three-dimensional networks and porous structure to graphene aerogels. Elemental analyses revealed that the AP contents in the AP/graphene composites prepared by drying naturally, freeze-drying, and supercritical CO2 drying were 89.97%, 92.41%, and 94.40%, respectively. XRD results showed that AP was dispersed homogeneously on the nanoscale in the AP/graphene composites dried with supercritical CO2 and the average particle diameter of AP was about 69 nm. DSC and TG-FTIR analyses indicated that graphene could promote the thermal decomposition of AP, particularly for the sample dried with supercritical CO2. Independent of drying method, the low-temperature decomposition of the as-prepared AP/graphene composites was not observed and the high-temperature decomposition was accelerated. Compared to the other two drying methods, graphene in the AP/graphene composites dried with supercritical CO2 showed most obvious promoting effects. The high-temperature decomposition temperature of the AP/graphene composites dried with supercritical CO2 decreased by 83.7 ℃ compared with that of pure AP, and the total heat release reached 2110 J·g-1. Moreover, graphene also took part in the oxidation reactions with oxidizing products, which was confirmed by the generation of CO2.



Key wordsDrying methods      Graphene      Ammonium perchlorate      Sol-gel method      Thermal decomposition     
Received: 04 March 2013      Published: 02 May 2013
MSC2000:  O643  
Fund:  

The project was supported by the Basic Research Foundation of Beijing Institute of Technology, China (20110942019).

Corresponding Authors: LUO Yun-Jun     E-mail: yjluo@bit.edu.cn
Cite this article:

WANG Xue-Bao, LI Jin-Qing, LUO Yun-Jun. Effect of Drying Methods on the Structure and Thermal Decomposition Behavior of Ammonium Perchlorate/Graphene Composites. Acta Phys. Chim. Sin., 2013, 29(10): 2079-2086.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201305021     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I10/2079

(1) Zhou, L. M.; Liu, H. Y.; Li, F. S. Acta Phys. -Chim. Sin. 2006,22 (5), 627. [周龙梅, 刘宏英, 李凤生. 物理化学学报, 2006,22 (5), 627.] doi: 10.3866/PKU.WHXB20060521
(2) Liu, H. B.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Sun, C. B.; Li, X. F.;Wu, H. Y. Mater. Lett. 2010, 64, 1698. doi: 10.1016/j.matlet.2010.04.061
(3) Liu, L. L.; Li, F. S.; Tan, L. H.; Min, L.; Yi, Y. Propellants Explos. Pyrotech. 2004, 29, 34.
(4) Kapoor, I. P. S.; Srivastava, P.; Singh, G. Propellants Explos. Pyrotech. 2009, 34, 351. doi: 10.1002/prep.v34:4
(5) Luo, X. L.; Han, Y. F.; Yang, D. S.; Chen, Y. S. Acta Phys. -Chim. Sin. 2012, 28 (2), 297. [罗小林,韩银凤, 杨德锁,陈亚芍. 物理化学学报, 2012, 28 (2), 297.] doi: 10.3866/PKU.WHXB201112012
(6) Chandru, R. A.; Patra, S.; Oommen, C.; Munichandraiah, N.;Raghunandan, B. N. J. Mater. Chem. 2012, 22, 6536. doi: 10.1039/c2jm16169a
(7) Li, N.; Cao, M. H.;Wu, Q. Y.; Hu, C. W. CrystEngComm 2012,14, 428. doi: 10.1039/c1ce05858d
(8) Chaturvedi, S.; Dave, P. N. J. Exp. Nanosci. 2012, 7 (2), 205.doi: 10.1080/17458080.2010.517571
(9) Han, X.; Sun, Y. L.; Wang, T. F.; Lin, Z. K.; Li, S. F.; Zhao, F.Q.; Liu, Z. R.; Yi, J. H.; Ren, X. E. J. Therm. Anal. Calorim.2008, 91, 551. doi: 10.1007/s10973-007-8290-6
(10) Reshmi, S.; Catherine, K. B.; Nair, C. P. R. Int. J. Nanotechnol.2011, 8 (10-12), 979.
(11) Compton, O. C.; Nguyen, S. T. Small 2010, 6, 711. doi: 10.1002/smll.v6:6
(12) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
(13) Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S.Nano Lett. 2008, 8 (10), 3498. doi: 10.1021/nl802558y
(14) Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol.2008, 3 (8), 491. doi: 10.1038/nnano.2008.199
(15) Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321,385. doi: 10.1126/science.1157996
(16) Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.;Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3),902. doi: 10.1021/nl0731872
(17) Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W.C.; Liu, B. J. Mater. Chem. 2011, 21, 6494. doi: 10.1039/c1jm10239g
(18) Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. ACS Nano 2010, 4 (7), 4324. doi: 10.1021/nn101187z
(19) Chen, W. F.; Yan, L. F. Nanoscale 2011, 3, 3132. doi: 10.1039/c1nr10355e
(20) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
(21) Boldyrev, V. V. Thermochim. Acta 2006, 443, 1. doi: 10.1016/j.tca.2005.11.038
(22) Fan, X. Z.; Li, J. Z.; Fu, X. L.; Wang, H. Acta Chim. Sin. 2009,67 (1), 39. [樊学忠,李吉祯, 付小龙, 王晗. 化学学报,2009, 67 (1), 39.]
(23) Li, N.; Geng, Z. F.; Cao, M. H.; Ren, L.; Zhao, X. Y.; Liu, B.;Tian, Y.; Hu, C. W. Carbon 2013, 54, 124. doi: 10.1016/j.carbon.2012.11.009
(24) Lu, M.; Lü, C. X. Journal of Nanjing University of Science and Technology 2002, 26, 72. [陆明, 吕春绪. 南京理工大学学报, 2002, 26, 72.]
(25) Cooper, P. W. Explosives Engineering;Wiley-VCH:Albuquerque NM, 1996; pp 24-26.

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[3] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[6] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[7] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[8] PENG Li-Juan, YAO Qian, WANG Jing-Bo, LI Ze-Rong, ZHU Quan, LI Xiang-Yuan. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. Chim. Sin., 2017, 33(4): 745-754.
[9] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[10] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[11] YU Hai-Yang, WANG Fang, LIU Qi-Chun, MA Qing-Yu, GU Zheng-Gui. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Phys. Chim. Sin., 2017, 33(2): 344-355.
[12] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[13] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[14] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[15] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.