Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (07): 1582-1587    DOI: 10.3866/PKU.WHXB201305031
Nanotribological and Wear Properties of Graphene
ZHU Qi-Rong1, LI Hui-Qin1, LI Ning1, CHAI Jing2, GAO Run-Gang2, LIANG Qi1
1 Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;
2 Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
Download:   PDF(1745KB) Export: BibTeX | EndNote (RIS)      


We prepared few-layer graphene samples by liquid-phase exfoliation in ethanol. By controlling the solvent temperature, sonication time and power, and centrifugation speed and time, we fabricated several-layer graphene from highly oriented pyrolytic graphite (HOPG). The obtained supernatant was added dropwise onto freshly cleaved mica surfaces. Nanotribological study of the samples under high vacuum by atomic force microscope (AFM) showed that frictional force decreased as the number of monolayers (ML) of graphene increased, and their frictional coefficient remained constant when the sample was thicker than about 4 ML. When the coverage reached 7 ML, the frictional coefficient was close to zero. In wear experiments, 2-ML graphene exhibited better wear resistance than the 4-ML sample and had no dependence on directional friction. We also measured the adhesion force of samples containing different numbers of layers of graphene and the mica surface, and found that substrate adhesion is not the main reason for the wear resistance properties of 2-ML graphene. Compared with single-layer graphene, the low friction coefficient of few-layer graphene makes it promising for application in areas such as data storage devices, nanoelectromechanical systems, and anti-wear coatings.

Key wordsHighly oriented pyrolytic graphite      Graphene      Nanotribology      Atomic force microscope      Wear     
Received: 29 January 2013      Published: 03 May 2013
MSC2000:  O647  

The project was supported by the National Natural Science Foundation of China (10974134).

Corresponding Authors: LIANG Qi     E-mail:
Cite this article:

ZHU Qi-Rong, LI Hui-Qin, LI Ning, CHAI Jing, GAO Run-Gang, LIANG Qi. Nanotribological and Wear Properties of Graphene. Acta Phys. -Chim. Sin., 2013, 29(07): 1582-1587.

URL:     OR

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
(2) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K.S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109
(3) Balandin, A. A.; Ghosh, S.; Bao,W. Z.; Calizo, I.; Teweldebrhan,D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3), 902.doi: 10.1021/nl0731872
(4) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.doi: 10.1038/nmat1849
(5) Geim, A. K. Science 2009, 324, 1530. doi: 10.1126/science.1158877
(6) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A.A. Nature 2005, 438, 197. doi: 10.1038/nature04233
(7) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80 (6), 1339. doi: 10.1021/ja01539a017
(8) Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A.R. Nano Lett. 2009, 9 (10), 3460. doi: 10.1021/nl9016623
(9) Renia, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.;Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9 (1), 30.doi: 10.1021/nl801827v
(10) Obraztsov, A. N. Nat. Nanotechnol. 2009, 4, 212. doi: 10.1038/nnano.2009.67
(11) Berger, C.; Song, Z.; Li, X.;Wu, X.; Brown, N.; Naud, C.;Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.;First, P. N.; de Heer,W. A. Science 2006, 312, 1191.doi: 10.1126/science.1125925
(12) Donnet, C., Erdemir, A. Surf. Coat. Tech. 2004, 180-181, 76.
(13) Lee, C.; Li, Q.; Kalb,W.; Liu, X. Z.; Berger, H.; Carpick, R.W.;Hone, J. Science 2010, 328, 76. doi: 10.1126/science.1184167
(14) Filleter, T.; McChesney, J. L.; Bostwick, A.; Rotenberg, E.;Emtsev, K. V.; Seyller, T.; Horn, K.; Bennewitz, R. Phys. Rev. Lett. 2009, 102, 086102. doi: 10.1103/PhysRevLett.102.086102
(15) Kim, K. S.; Lee, H. J.; Lee, C.; Lee, S. K.; Jang, H.; Ahn, J. H.;Kim, J. H.; Lee, H. J. ACS Nano 2011, 5, 5107. doi: 10.1021/nn2011865
(16) Shin, Y. J.; Stromberg, R.; Nay, R.; Huang, H.;Wee, A. T. S.;Yang, H.; Bhatia, C. S. Carbon 2011, 49, 4070. doi: 10.1016/j.carbon.2011.05.046
(17) Lin, L. Y.; Kim, D. E.; Kim,W. K.; Jun, S. C. Surf. Coat. Tech.2011, 205, 4864. doi: 10.1016/j.surfcoat.2011.04.092
(18) Sandoz-Rosado, E. J.; Tertuliano, O. A.; Terrell, E. J. Carbon2012, 50, 4078. doi: 10.1016/j.carbon.2012.04.055
(19) Marchetto, D.; Held, C.; Hausen, F.;Wählisch, F.; Dienwiebel,M.; Bennewitz, R. Tribol. Lett. 2012, 48, 77. doi: 10.1007/s11249-012-9945-4
(20) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri,M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth,S.; Geim, A. K. Phys. Rev. Lett. 2006, 97, 187401. doi: 10.1103/PhysRevLett.97.187401
(21) Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G.W.; Heinz, T. F.Nature 2009, 462, 339. doi: 10.1038/nature08569
(22) Li, Q. Y.; Lee, C. G.; Carpick, R.W.; Hone, J. Phys. Status Solidi B 2010, 247, 2909. doi: 10.1002/pssb.v247.11/12
(23) Du, X. Q.; Li, H. Q.; Zhu, Q. R.; Zou, Z. Q.; Liang, Q. Acta Phys. -Chim. Sin. 2011, 27 (10), 2457. [杜晓青, 李慧琴,朱齐荣, 邹志强, 梁齐. 物理化学学报, 2011, 27 (10), 2457.]doi: 10.3866/PKU.WHXB20111010
(24) Liang, Q.; Li, H. N.; Xu, Y. B.; Xiao, X. D. J. Phys. Chem. B2006, 110, 403. doi: 10.1021/jp054939o
(25) Shin, Y. J.;Wang, Y.; Huang, H.; Kalon, G.;Wee, A. T. S.; Shen,Z. X.; Bhatia, C. S.; Yang, H. Langmuir 2010, 26 (6), 3798.doi: 10.1021/la100231u

[1] Qi HU,Chuanhong JIN. In Situ TEM Observation of Radiolysis and Condensation of Water via Graphene Liquid Cell[J]. Acta Phys. -Chim. Sin., 2019, 35(1): 101-107.
[2] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[3] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[10] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[11] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[12] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[13] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[14] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.
[15] Quan QUAN,Shun-Ji XIE,Ye WANG,Yi-Jun XU. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle, Recent Progress, and Future Perspective[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2404-2423.