Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (07): 1595-1602    DOI: 10.3866/PKU.WHXB201305082
PHYSICAL CHEMISTRY OF MATERIALS     
Effective Adsorption of Functional Biological Macromolecules on Stainless Steel Surface with Micro/Nanoporous Texture
YU Zhan-Jiang1, CHEN Yong-Qiang2, YANG Xiao-Da1
1 State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China;
2 Lepu Medical Technology (Beijing) Co., Ltd., Beijing 100022, P. R. China
Download:   PDF(2053KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Stainless steel (AISI 316L) is commonly used as a material in medical devices. Modification of the metal surface with bioactive molecules and/or nanoparticles to develop next-generation smart biomaterial, e.g., cardiovascular stents, has recently attracted great attention. The present work investigated adsorption of antibodies and enzymes on micro/nanoporous 316L stainless steel compared with that on smooth and gold-coated stainless steel surfaces. The experimental results showed that the micro/nanoporous stainless steel surface produced by electrochemical erosion can adsorb a large amount of proteins (antibodies or horse radish peroxidase (HRP)), with comparable or better results than the sputtered-gold surface. Washes with surfactants (e.g., 10% bull serum albumin (BSA) or 0.2% Tween 20 solution) did not remove the enzymes/antibodies. In contrast, pretreatment of the metal plates with 5% Tween 20 halved antibody adsorption but did not affect adsorption of HRP. The wettability of the porous metal surface coated with proteins depended on the protein species and amount of protein adsorbed. The protein-coated porous surface was hydrophilic (water contact angle<50°), which should make it biocompatible. The proteins on the micro/nanoporous stainless steel surface retained their high biological activity; in particular, micro/nanoporous stainless steel stents modified with an anti-CD34 antibody using the present method can effectively and selectively capture KG-1 cells. Our work provides a basis for developing novel polymer-free, smart, economic biomaterials with stainless steel for biomedical applications.



Key wordsMicro/nano texture      Stainless steel      Antibody      Horse radish peroxidase      Surface adsorption     
Received: 04 March 2013      Published: 08 May 2013
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (30770581, 20971008) and Research Fund for the Doctoral Program of Higher Education, China (20090001110068).

Corresponding Authors: YANG Xiao-Da     E-mail: xyang@bjmu.edu.cn
Cite this article:

YU Zhan-Jiang, CHEN Yong-Qiang, YANG Xiao-Da. Effective Adsorption of Functional Biological Macromolecules on Stainless Steel Surface with Micro/Nanoporous Texture. Acta Phys. -Chim. Sin., 2013, 29(07): 1595-1602.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201305082     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I07/1595

(1) Holzapfel, B. M.; Reichert, J. C.; Schantz, J. T.; Gbureck, U.;Rackwitz, L.; Noth, U.; Jakob, F.; Rudert, M.; Groll, J.;Hutmacher, D.W. Adv. Drug Deliv. Rev. 2013, 65, 581. doi: 10.1016/j.addr.2012.07.009
(2) Nagarajan, S.; Mohana, M.; Sudhagar, P.; Raman, V.;Nishimura, T.; Kim, S.; Kang, Y. S.; Rajendran, N. ACS Appl. Mater. Interfaces 2012, 4, 5134.
(3) Abdel-Fattah, T. M.; Loftis, D.; Mahapatro, A. J. Biomed. Nanotechnol. 2011, 7, 794. doi: 10.1166/jbn.2011.1346
(4) Hayes, J. S.; Richards, R. G. Expert. Rev. Med. Devices 2010, 7,843. doi: 10.1586/erd.10.53
(5) Weckbach, S.; Losacco, J. T.; Hahnhaussen, J.; Gebhard, F.;Stahel, P. F. Unfallchirurg 2012, 115, 75. doi: 10.1007/s00113-011-2145-0
(6) Joung, Y. K.; You, S. S.; Park, K. M.; Go, D. H.; Park, K. D.Colloids Surf. B: Biointerfaces 2012, 99, 102. doi: 10.1016/j.colsurfb.2011.10.047
(7) Slaney, A. M.;Wright, V. A.; Meloncelli, P. J.; Harris, K. D.;West, L. J.; Lowary, T. L.; Buriak, J. M. ACS Appl. Mater. Interfaces 2011, 3, 1601. doi: 10.1021/am200158y
(8) Lionetto, S.; Little, A.; Moriceau, G.; Heymann, D.; Decurtins,M.; Plecko, M.; Filgueira, L.; Cadosch, D. J. Biomed. Mater. Res. A 2013, 101, 991.
(9) Yang, Z.; Tu, Q.; Zhu, Y.; Luo, R.; Li, X.; Xie, Y.; Maitz, M. F.;Wang, J.; Huang, N. Adv. Healthc. Mater. 2012, 1, 548. doi: 10.1002/adhm.201200073
(10) Kang, C. K.; Lim,W. H.; Kyeong, S.; Choe,W. S.; Kim, H. S.;Jun, B. H.; Lee, Y. S. Colloids Surf. B: Biointerfaces 2013, 102,744. doi: 10.1016/j.colsurfb.2012.09.008
(11) Caro, A.; Humblot, V.; Methivier, C.; Minier, M.; Salmain, M.;Pradier, C. M. J. Phys. Chem. B 2009, 113, 2101. doi: 10.1021/jp805284s
(12) Kang, C. K.; Lee, Y. S. J. Mater. Sci. Mater. Med. 2007, 18,1389. doi: 10.1007/s10856-006-0079-9
(13) Ceylan, H.; Tekinay, A. B.; Guler, M. O. Biomaterials 2011, 32,8797. doi: 10.1016/j.biomaterials.2011.08.018
(14) Davis, E. M.; Li, D. Y.; Irvin, R. T. Biomaterials 2011, 32, 5311.doi: 10.1016/j.biomaterials.2011.04.027
(15) Ignatova, M.; Voccia, S.; Gabriel, S.; Gilbert, B.; Cossement,D.; Jerome, R.; Jerome, C. Langmuir 2009, 25, 891. doi: 10.1021/la802472e
(16) Imamura, K.; Kawasaki, Y.; Awadzu, T.; Sakiyama, T.;Nakanishi, K. J. Colloid Interface Sci. 2003, 267, 294. doi: 10.1016/S0021-9797(03)00700-8
(17) Falentin-Daudre, C.; Faure, E.; Svaldo-Lanero, T.; Farina, F.;Jerome, C.; Van DeWeerdt, C.; Martial, J.; Duwez, A. S.;Detrembleur, C. Langmuir 2012, 28, 7233. doi: 10.1021/la3003965
(18) Harvey, J.; Bergdahl, A.; Dadafarin, H.; Ling, L.; Davis, E. C.;Omanovic, S. Biotechnol. Lett. 2012, 34, 1159. doi: 10.1007/s10529-012-0885-8
(19) Secker, T. J.; Herve, R.; Zhao, Q.; Borisenko, K. B.; Abel, E.W.; Keevil, C.W. Biofouling 2012, 28, 563. doi: 10.1080/08927014.2012.698387
(20) Horia, N.; Iwasaa, F.; Uenoa, T.; Takeuchib, K.; Tsukimuraa, N.;Yamadaa, M.; Hattorib, M.; Yamamotoc, A.; Ogawaa, T. Dental Materials 2010, 26, 275. doi: 10.1016/j.dental.2009.11.077
(21) Subramanian, B.; Ananthakumar, R.; Kobayashi, A.;Jayachandran, M. J. Mater. Sci. Mater. Med. 2012, 23, 329. doi: 10.1007/s10856-011-4500-7
(22) Subramanian, B.; Dhandapani, P.; Maruthamuthu, S.;Jayachandran, M. J. Biomater. Appl. 2012, 26, 687. doi: 10.1177/0885328210377534
(23) Valanezahad, A.; Ishikawa, K.; Tsuru, K.; Maruta, M.; Matsuya,S. Dent. Mater. J. 2011, 30, 749. doi: 10.4012/dmj.2010-153
(24) Buhagiar, J.; Bell, T.; Sammons, R.; Dong, H. J. Mater. Sci. Mater. Med. 2011, 22, 1269.
(25) Wendel, H. P.; Avci-Adali, M.; Ziemer, G. Int. J. Cardiol. 2010,145, 115. doi: 10.1016/j.ijcard.2009.06.020
(26) Granada, J. F.; Inami, S.; Aboodi, M. S.; Tellez, A.; Milewski,K.;Wallace-Bradley, D.; Parker, S.; Rowland, S.; Nakazawa,G.; Vorpahl, M.; Kolodgie, F. D.; Kaluza, G. L.; Leon, M. B.;Virmani, R. Circ. Cardiovasc. Interv. 2010, 3, 257. doi: 10.1161/CIRCINTERVENTIONS.109.919936
(27) McGuigan, A. P.; Sefton, M. V. Biomaterials 2007, 28, 2547.doi: 10.1016/j.biomaterials.2007.01.039
(28) Rossi, M. L.; Zavalloni, D.; Gasparini, G. L.; Mango, R.; Belli,G.; Presbitero, P. Int. J. Cardiol. 2010, 141, e20.
(29) Le Guehennec, L.; Martin, F.; Lopez-Heredia, M. A.; Louarn,G.; Amouriq, Y.; Cousty, J.; Layrolle, P. Nanomedicine 2008, 3,61. doi: 10.2217/17435889.3.1.61
(30) Pan, H. A.; Liang, J. Y.; Hung, Y. C.; Lee, C. H.; Chiou, J. C.;Huang, G. S. Biomaterials 2013, 34, 841. doi: 10.1016/j.biomaterials.2012.09.078
(31) Ranellaa, A.; Barberogloua, M.; Bakogiannia, S.; Fotakisa, C.;Stratakisa, E. Acta Biomaterialia 2010, 6, 2711. doi: 10.1016/j.actbio.2010.01.016
(32) Nayak, B. K.; Gupta, M. C. Optics and Lasers in Engineering2010, 48, 940. doi: 10.1016/j.optlaseng.2010.04.010
(33) Fukuzaki, S.; Urano, H.; Nagata, K. J. Ferment. Bioeng. 1995,80, 6. doi: 10.1016/0922-338X(95)98168-K
(34) Bee, J. S.; Chiu, D.; Sawicki, S.; Stevenson, J. L.; Chatterjee,K.; Freund, E.; Carpenter, J. F.; Randolph, T.W. J. Pharm. Sci.2009, 98, 3218.
(35) Sakiyama, T.; Aya, A.; Embutsu, M.; Imamura, K.; Nakanishi,K. J. Biosci. Bioeng. 2006, 101, 434. doi: 10.1263/jbb.101.434
(36) Hagiwara, T.; Sakiyama, T.;Watanabe, H. Langmuir 2009, 25,226.
(37) He, C. X.; Yuan, A. P.; Zhang, Q. L.; Ren, X. Z.; Li, C. H.; Liu,J. H. Acta Phys. -Chim. Sin. 2012, 28, 2721. [何传新, 袁安朋,张黔玲, 任祥忠, 李翠华, 刘剑洪. 物理化学学报, 2012, 28,2721.] doi: 10.3866/PKU.WHXB201207191
(38) Zhang, F.; Guo,W.; Yu, Z.;Wang, Y. C. Chin. J. Pharm. Anal.2011, 31, 862.
(39) Berry, J. L.; Santamarina, A.; Moore, J. E., Jr.; Roychowdhury,S.; Routh,W. D. Ann. Biomed. Eng. 2000, 28, 386. doi: 10.1114/1.276
(40) Hao, L.; Lawrence, J. Proc. Inst. Mech. Eng. H 2006, 220, 47.doi: 10.1243/095441105X68999
(41) Mikulewicz, M.; Chojnacka, K. Biol. Trace. Elem. Res. 2011,142, 865. doi: 10.1007/s12011-010-8798-7
(42) Matsumura, H.; Saburi, M. Colloids Surf. B: Biointerfaces 2006,47, 146. doi: 10.1016/j.colsurfb.2005.12.004
(43) Mourtas, S.; Kastellorizios, M.; Klepetsanis, P.; Farsari, E.;Amanatides, E.; Mataras, D.; Pistillo, B. R.; Favia, P.; Sardella,E.; d'Agostino, R.; Antimisiaris, S. G. Colloids Surf. B: Biointerfaces 2011, 84, 214. doi: 10.1016/j.colsurfb.2011.01.002
(44) Muller, R.; Abke, J.; Schnell, E.; Macionczyk, F.; Gbureck, U.;Mehrl, R.; Ruszczak, Z.; Kujat, R.; Englert, C.; Nerlich, M.;Angele, P. Biomaterials 2005, 26, 6962. doi: 10.1016/j.biomaterials.2005.05.013
(45) Liu, P.; Xing, G.W.; Li, X.W.; Ye, Y. H. Acta Phys. -Chim. Sin.2010, 26, 1113. [刘平, 邢国文, 李宣文, 叶蕴华. 物理化学学报, 2010, 26, 1113.] doi: 10.3866/PKU.WHXB20100448
(46) Omanovic, S.; Roscoe, S. G. J. Colloid Interface Sci. 2000, 227,452. doi: 10.1006/jcis.2000.6913
(47) Bee, J. S.; Davis, M.; Freund, E.; Carpenter, J. F.; Randolph, T.W. Biotechnol. Bioeng. 2010, 105, 121. doi: 10.1002/bit.v105:1
(48) Hedberg, Y. S.; Killian, M. S.; Blomberg, E.; Virtanen, S.;Schmuki, P.; OdnevallWallinder, I. Langmuir 2012, 28, 16306.doi: 10.1021/la3039279
(49) Desroches, M. J.; Omanovic, S. Phys. Chem. Chem. Phys. 2008,10, 2502. doi: 10.1039/b719371h

[1] Lei XING,Li-Ying JIAO. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2133-2145.
[2] Kui LI,Yao-Lin ZHAO,Jia DENG,Chao-Hui HE,Shu-Jiang DING,Wei-Qun SHI. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2264-2270.
[3] DENG Jie, TAO Jie, WU Tao, TAO Hai-Jun. Growth Mechanism and Characterization of Flexible TiO2 Nanowhisker Films Hydrothermally Synthesized in Dilute Alkaline Solution[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 858-866.
[4] ZHU Yan-Feng, ZHANG Juan, ZHANG Yi-Yong, DING Min, QI Hai-Qing, DU Rong-Gui, LIN Chang-Jian. Anticorrosion Properties of Modified Nano-TiO2 Films Prepared by Sol-Gel Method[J]. Acta Phys. -Chim. Sin., 2012, 28(02): 393-398.
[5] BU Yu-Yu, LI Wei-Bing, YU Jian-Qiang, WANG Xiu-Tong, QI Mei-Ling, NIE Meng-Yan, HOU Bao-Rong. Fabrication of SrTiO3 Nanocrystalline Film Photoelectrode and Its Photoelectrochemical Anticorrosion Properties for Stainless Steel[J]. Acta Phys. -Chim. Sin., 2011, 27(10): 2393-2399.
[6] CHEN Ye, CHEN Jian-Hua, GUO Jin. Adsorption of O2 and CN on the Copper Activated Sphalerite (110) Surface[J]. Acta Phys. -Chim. Sin., 2011, 27(02): 363-368.
[7] ZHOU Wen-Wen, LIAN Jie, HU Ke-Jia, GAO Yun-Hua, XU Bai. Effect of Surface Chemical Properties of a Silicon Chip on Antibody Immobilization[J]. Acta Phys. -Chim. Sin., 2010, 26(10): 2821-2827.
[8] LI Jin, XU Zhao-Yi, LI Jiu-Yi, JIAO Di. Characteristics of theMicrobiologically Influenced Corrosion of 304 Stainless Steel in Reclaimed Water Enviroment[J]. Acta Phys. -Chim. Sin., 2010, 26(10): 2638-2646.
[9] ZHU Yan-Feng, DU Rong-Gui, LI Jing, QI Hai-Qing, LIN Chang-Jian. Photogenerated Cathodic Protection Properties of a TiO2 Nanowire FilmPrepared by a Hydrothermal Method[J]. Acta Phys. -Chim. Sin., 2010, 26(09): 2349-2353.
[10] DENG Lin, QI Zhi-Mei. Effect of Glass Silylation on the Adsorption Behavior of Rhodamine 6G and Methylene Blue[J]. Acta Phys. -Chim. Sin., 2010, 26(07): 1923-1928.
[11] LI Guang-Xu, CHEN Xiao-Wei, BAI Jia-Dong, LAN Zhi-Qiang, GUO Jin. Adsorption and Diffusion of H on Mg2Ni(100) Surface[J]. Acta Phys. -Chim. Sin., 2010, 26(05): 1448-1456.
[12] LIANG Peng, XU Hong-Feng, LIU Ming, LU Lu, FU Jie. Electrochemical Performance Testing and Characterization of Silver-Plated and Graphite-Coated 316L Stainless Steel Bipolar Plates[J]. Acta Phys. -Chim. Sin., 2010, 26(03): 595-600.
[13] ZHU Li-Qun, WU Kun-Hu, LI Wei-Ping, LIU Hui-Cong. Scaling and Corrosion of 304 Stainless Steel and Galvanized Steel Pipes in a Simulated Geothermal Water Environment[J]. Acta Phys. -Chim. Sin., 2010, 26(01): 39-46.
[14] DENG Lin, LU Dan-Feng, QI Zhi-Mei. Adsorption of Dye Molecules onto a Glass Surface Studied by Optical Waveguide Spectroscopy[J]. Acta Phys. -Chim. Sin., 2009, 25(12): 2481-2487.
[15] NI Bi-Lian, CAI Ya-Ping, LI Yi, DING Kai-Ning, ZHANG Yong-Fan. Geometries and Electronic Structures for the Adsorption of Li on Si(001) Surface with Different Coverages[J]. Acta Phys. -Chim. Sin., 2009, 25(08): 1535-1544.