Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (08): 1698-1704    DOI: 10.3866/PKU.WHXB201305102
Electrochemistry of MgCl2 in LiCl-KCl Eutectic Melts
TANG Hao1, YAN Yong-De1,2, ZHANG Mi-Lin1, XUE Yun2, ZHANG Zhi-Jian2, DU Wei-Chao1, HE Hui3
1 Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China;
2 Key Discipline Laboratory of Nuclear Safety and Simulation Technology, Harbin Engineering University, Harbin 150001, P. R. China;
3 China Institute of Atomic Energy, Beijing 102413, P. R. China
Download:   PDF(675KB) Export: BibTeX | EndNote (RIS)      


The electrochemical behavior and thermodynamic properties of MgCl2 dissolved in LiCl-KCl eutectic melts in the temperature range of 723-908 K were investigated. Cyclic and square wave voltammetry experiments indicated that the reduction of Mg ions into Mg metal occurred in a single step and involved exchange of two electrons. The diffusion coefficient (D) of Mg(II) was determined by the Berzins-Delahay equation and the Arrhenius law was validated by plotting lgD versus T-1 for the reduction of Mg(II). Open circuit chronopotentiometry was used to determine the equilibrium potential of Mg(II)/Mg(0). The standard apparent potentials of the Mg(II)/Mg(0) system and the activity coefficients of Mg(II) in LiCl-KCl eutectic melts based on a pure supercool reference state were calculated at several temperatures.

Key wordsMolten chloride      Thermodynamic property      Activity coefficient of MgCl2      Standard apparent potential     
Received: 25 February 2013      Published: 10 May 2013
MSC2000:  O646  

The project was supported by the High Technology Research and Development Program of China (2011AA03A409), National Natural Science Foundation of China (21103033, 21101040, 91226201), Fundamental Research Funds for the Central Universities, China (HEUCF201310012), and Foundation for University Key Teacher of Heilongjiang Province of China (1253G016).

Corresponding Authors: YAN Yong-De     E-mail:
Cite this article:

TANG Hao, YAN Yong-De, ZHANG Mi-Lin, XUE Yun, ZHANG Zhi-Jian, DU Wei-Chao, HE Hui. Electrochemistry of MgCl2 in LiCl-KCl Eutectic Melts. Acta Phys. Chim. Sin., 2013, 29(08): 1698-1704.

URL:     OR

(1) Alam, M. E.; Han, S.; Nguyen, Q. B.; Hamouda, A. M. S.;Gupta, M. J. Alloy. Compd. 2011, 509, 8522. doi: 10.1016/j.jallcom.2011.06.020
(2) Hassan, S. F.; Gupta, M. J. Alloy. Compd. 2006, 419, 84. doi: 10.1016/j.jallcom.2005.10.005
(3) Kojima, Y. Mater. Trans. 2001, 42, 1154. doi: 10.2320/matertrans.42.1154
(4) Nguyen, Q. B.; Gupta, M. J. Alloy. Compd. 2008, 459, 244. doi: 10.1016/j.jallcom.2007.05.038
(5) Lü, Y.;Wang, Q.; Zeng, X.; Ding,W.; Zhai, C.; Zhu, Y. Mater. Sci. Eng. 2000, A278, 66.
(6) Sanschagrin, A.; Tremblay, R.; Angers, R. Mater. Sci. Eng.1996, A220, 69.
(7) Wu, R. Z.; Qu, Z. K.; Zhang, M. L. Rev. Adv. Mater. Sci. 2010,24, 35.
(8) Iida, T.; Nohira, T.; Ito, Y. Electrochim. Acta 2003, 48, 2517.doi: 10.1016/S0013-4686(03)00293-7
(9) Li, J. X.; Lai, H.; Zhang, Z. C.; Zhuang, B.; Huang, Z. G. Acta Phys. -Chim. Sin., 2007, 23 (8), 1301. [李加新, 赖恒, 张志城, 庄彬, 黄志高. 物理化学学报, 2007, 23 (8), 1301.] doi: 10.3866/PKU.WHXB20070832
(10) Li, G. R.; Tong, Y. X.; Liu, G. K. Acta Phys. -Chim. Sin. 2003,19 (7), 630. [李高仁, 童叶翔, 刘冠昆. 物理化学学报, 2003,19 (7), 630.] doi: 10.3866/PKU.WHXB20030713
(11) Gibilaro, M.; Massot, L.; Chamelot, P.; Taxil, P. Electrochim. Acta 2009, 54, 5300. doi: 10.1016/j.electacta.2009.01.074
(12) Gibilaro, M.; Massot, L.; Chamelot, P.; Taxil, P. J. Nucl. Mater.2008, 382, 39. doi: 10.1016/j.jnucmat.2008.09.004
(13) Gibilaro, M.; Massot, L.; Chamelot, P.; Cassayre, L.; Taxil, P.Electrochim. Acta 2009, 55, 281. doi: 10.1016/j.electacta.2009.08.052
(14) Yan, Y. D.; Tang, H.; Zhang, M. L.; Xue, Y.; Han,W.; Cao, D.X.; Zhang, Z. J. Electrochim. Acta 2012, 59, 531. doi: 10.1016/j.electacta.2011.11.007
(15) Yan, Y. D.; Xu, Y. L.; Zhang, M. L.; Xue, Y.; Han,W.; Huang,Y.; Chen, Q.; Zhang, Z. J. J. Nucl. Mater. 2013, 433, 152. doi: 10.1016/j.jnucmat.2012.09.008
(16) Tang, H.; Yan, Y. D.; Zhang, M. L.; Li, X.; Huang, Y.; Xu, Y. L.;Xue, Y.; Han,W.; Zhang, Z. J. Electrochim. Acta 2013, 88, 457.doi: 10.1016/j.electacta.2012.10.045
(17) Cao, P.; Zhang, M. L.; Han,W.; Yan, Y. D.;Wei, S. Q.; Zheng,T. J. Rare Earths 2011, 29, 763. doi: 10.1016/S1002-0721(10)60538-8
(18) Han,W.; Tian, Y.; Zhang, M. L.; Ye, K.; Yan, Y. D.; Zhao, Q. Y.;Wei, S. Q. J. Rare Earths 2010, 28, 227. doi: 10.1016/S1002-0721(09)60085-5
(19) Xue, Y.; Yan, Y. D.; Zhang, M. L.; Han,W.; Zhang, Z. J. J. Rare Earths 2012, 30, 1048. doi: 10.1016/S1002-0721(12)60177-X
(20) Castrillejo, Y.; Hernández, P.; Rodriguez, J. A.; Vega, M.;Barrado, E. Electrochim. Acta 2012, 71, 166. doi: 10.1016/j.electacta.2012.03.124
(21) Martínez, A. M.; Børresen, B.; Haarberg, G. M.; Castrillejo, Y.;Tunold, R. J. Appl. Electrochem. 2004, 34, 1271. doi: 10.1007/s10800-004-1761-6
(22) Støre, T.; Haarberg, G. M.; Tunold, R. J. Electroanal. Chem.2000, 30, 1351.
(23) Hamer,W. J.; Malmberg, M. S.; Rubin, B. J. Electrochem. Soc.1956, 103, 8. doi: 10.1149/1.2430236
(24) Laitinen, H. A.; Liu, C. H. J. Am. Chem. Soc. 1958, 80, 1015.doi: 10.1021/ja01538a001
(25) Pletcher, D.; Greef, R.; Peat, R.; Peter, L.; Robinson, J.Instrumental Methods in Electrochemistry; SouthamptonElectrochemistry Group, University of Southampton, Horwood:London, 2001.
(26) Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamental and Applications;Wiley: New York, 2001.
(27) Nicholson, M. M. J. Am. Soc. 1954, 76, 2539. doi: 10.1021/ja01638a072
(28) Osteryoung, J.; Osteryoung, R. A. Anal. Chem. 1985, 57, 101.doi: 10.1021/ac00279a004
(29) Ramaley, L.; Krasue, M. S. Anal. Chem. 1969, 41, 1362. doi: 10.1021/ac60280a005
(30) Berzins, T.; Delahay, P. J. Am. Chem. Soc. 1953, 75, 555. doi: 10.1021/ja01099a013
(31) Cassayre, L.; Serp, J.; Soucek, P.; Malmbeck, R.; Rebizant, J.;Glatz, J. P. Electrochim. Acta 2007, 52, 7432. doi: 10.1016/j.electacta.2007.06.022
(32) Yang, L.; Hudson, R. G. J. Electrochem. Soc. 1959, 106, 986.doi: 10.1149/1.2427195
(33) Fusselman, S. P.; Roy, J. J.; Grimmett, D. L.; Grantham, L. F.;Krueger, C. L.; Nabelek, C. R.; Storvick, T. S.; Inoue, T.;Hijikata, T.; Kinoshita, K.; Sakamura, Y.; Uozumi, K.; Kawai,T.; Takahashi, N. J. Electrochem. Soc. 1999, 146, 2573. doi: 10.1149/1.1391974
(34) Barin, I.; Knacke, O. Thermochemical Properties of Inorganic Substances; Springer: Berlin, 1973, Supplement, 1997.

[1] ZHANG Ting, SHEN Jie. Aggregation Properties and Thermodynamics of Micellization of Gemini Surfactants with Diester and Rigid Spacers in Organic Alcohol-Water Mixed Media[J]. Acta Phys. Chim. Sin., 2017, 33(4): 795-802.
[2] TAN Tian, YANG Jia-Hui, ZHU Chun-Hua, WANG Guan-Wu, CHEN Jia-Fu, SU Ji-Hu. AWeak Intercage C―C Bond in a [C60]fullerene Dimer Studied by In situ Variable Temperature EPR Spectroscopy[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1929-1932.
[3] JIANG Tao, PENG Shu-Ming, LI Mei, PEI Ting-Ting, HAN Wei, SUN Yang, ZHANG Mi-Lin. Electrochemical Behavior of Pr(Ⅲ) Ions on a Bi-Coated W Electrode in LiCl-KCl Melts[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1708-1714.
[4] LI Mei, SUN Ting-Ting, LIU Bin, HAN Wei, SUN Yang, ZHANG Mi-Lin. Electrochemical Behavior of Dy(Ⅲ) and the Selective Formation of Dy-Ni Intermetallic Compounds in LiCl-KCl Eutectic Melts[J]. Acta Phys. Chim. Sin., 2015, 31(2): 309-314.
[5] CAO Jia, WANG Wen-Liang, GAO Lou-Jun, FU Feng. Mechanism and Thermodynamic Properties of CH3SO3 Decomposition[J]. Acta Phys. Chim. Sin., 2013, 29(06): 1161-1167.
[6] LIU Bo, HUANG Shi-Ping, ZHU Ji-Qin, WANG Peng, TIAN Hui-Ping. Effect of Temperature on the Structural and Thermodynamic Properties of Aqueous Dimethyl Sulfoxide[J]. Acta Phys. Chim. Sin., 2011, 27(02): 289-294.
[7] HU Yan-Fei, JIANG Gang, MENG Da-Qiao, KONG Fan-Jie. Phase Transition and Thermodynamic Properties of TiO2[J]. Acta Phys. Chim. Sin., 2010, 26(06): 1664-1668.
[8] LI Xue-Liang, CHEN Jie-Jie, LUO Mei, CHEN Xiang-Ying, LI Pei-Pei. Quantum Chemical Calculation of Hydroxyalkyl Ammonium Functionalized Ionic Liquids for Absorbing SO2[J]. Acta Phys. Chim. Sin., 2010, 26(05): 1364-1372.
[9] LV Ran, GAO Tao, LI Xi-Bo, LUO Jiang-Shan, TANG Yong-Jian. Elastic and Thermodynamic Properties of Zinc-Blende ZnTe under High Temperature and Pressure[J]. Acta Phys. Chim. Sin., 2010, 26(01): 13-17.
[10] LING Jin-Long, JI Bing, MO Qin-Hua, SUN Lai-Yu. Micellization Behavior and Thermodynamic Properties of Triton X-100/CTAB Mixtures in Ethylene Glycol and Water Solvent Mixtures[J]. Acta Phys. Chim. Sin., 2009, 25(07): 1297-1302.
[11] TONG Bo; TAN Zhi-Cheng; WANG Shao-Xu. Thermodynamic Properties of 1-Docosanol[J]. Acta Phys. Chim. Sin., 2008, 24(09): 1699-1702.
[12] ALI Anwar; NABI Firdosa. Intermolecular Interactions in Binary Liquid Mixtures of Styrene with m-, o-, or p-xylene[J]. Acta Phys. Chim. Sin., 2008, 24(01): 47-54.
[13] WANG Shao-Xu; ZHAO Zhe; TAN Zhi-Cheng; LI Yan-Sheng; TONG Bo; SHI Quan; LI Ying. Thermal Stability and Kinetics of Thermal Decomposition for Protionamide[J]. Acta Phys. Chim. Sin., 2007, 23(09): 1459-1462.
[14] LAI Wei-Peng; XUE Yong-Qiang; LIAN Peng; GE Zhong-Xue; WANG Bo-Zhou; ZHANG Zhi-Zhong. Effects of Particle Size on Properties of Chemical Reaction Thermodynamics of Nanosystems[J]. Acta Phys. Chim. Sin., 2007, 23(04): 508-512.
[15] Liu Feng-Ling. DFT Studies on the UnsaturatedCarbenoid H2C=CLiF[J]. Acta Phys. Chim. Sin., 2002, 18(03): 228-231.