Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (07): 1363-1369    DOI: 10.3866/PKU.WHXB201305221
COMMUNICATION     
Preparation, Characterization and Photocatalytic Activity of Cr-Doped Rutile TiO2(110) Single Crystal Thin Films
WANG Yang1, SHAO Xiang2, WANG Bing1
1 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China;
2 Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
Download:   PDF(2507KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The growth of Cr-doped rutile TiO2(110) homoepitaxial single crystal thin films was investigated using pulsed laser deposition (PLD) method. Surface morphology and electronic structure were characterized using scanning tunneling microscopy/spectroscopy (STM/STS), X-ray and ultraviolet photoemission spectroscopy (XPS/UPS). The optical absorption spectra were measured using ultravioletvisible (UV-Vis) absorption spectroscopy. From STM images, we observed that the atomic flat TiO2(110)-(1×1) surface maintained at Cr doping concentration of 6% (atomic ratio), indicating a negligible effect of the Cr dopants on the surface morphology. The Cr doped ruteile TiO2(110) film showed higher tunneling conductance than undoped rutile single crystal. XPS and UPS spectra indicated that Cr atoms bond to lattice O, exhibiting an +3 oxidation state of +3 and introducing an impurity state above the valence band maximum by 0.4 eV. The UV-Vis absorption spectrum of the Cr doped film showed an absorbance extended to ~650 nm, in a visible light range, which was consistent with the UPS spectra. Using the Cr-doped TiO2 films, the dissociation of methanol molecules was only observed under the UV light illumination (wavelength shorter than 430 nm), however, the dissociation reaction was not observed under the visible light illumination (wavelength longer than 430 nm). Our results suggest that the monodoping by Cr element may not be sufficient to promote the visible light photoactivity of rultile TiO2(110) surface.



Key wordsRutile TiO2 thin film      Cr-doped      Band structure      Photocatalysis     
Received: 02 April 2013      Published: 22 May 2013
MSC2000:  O644  
  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (90921013).

Corresponding Authors: WANG Bing     E-mail: bwang@ustc.edu.cn
Cite this article:

WANG Yang, SHAO Xiang, WANG Bing. Preparation, Characterization and Photocatalytic Activity of Cr-Doped Rutile TiO2(110) Single Crystal Thin Films. Acta Phys. Chim. Sin., 2013, 29(07): 1363-1369.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201305221     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I07/1363

(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(2) Zafra, A.; Garcia, J.; Milis, A.; Domenech, X. J. Mol. Catal.1991, 70, 343. doi: 10.1016/0304-5102(91)80129-Q
(3) Herrmann, J. M.; Disdier, J.; Pichat, P. J. Catal. 1988, 113, 72.doi: 10.1016/0021-9517(88)90238-2
(4) Frank, S. N.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 303.doi: 10.1021/ja00443a081
(5) Hidaka, H.; Nakamura, T.; Ishizaka, A.; Tsuchiya, M.; Zhao, J.C. J. Photochem. Photobiol. A 1992, 66, 367. doi: 10.1016/1010-6030(92)80009-K
(6) Pollema, C. H.; Hendrix, J. L.; Milosavljevic, E. B.; Solujic, L.;Nelson, J. H. J. Photochem. Photobiol. A 1992, 66, 235.doi: 10.1016/1010-6030(92)85217-I
(7) Chen, D.; Ray, A. K. Chem. Eng. Sci. 2001, 56, 1561.doi: 10.1016/S0009-2509(00)00383-3
(8) Kanki, T.; Yoneda, H.; Sano, N.; Toyoda, A.; Nagai, C. Chem. Eng. J. 2004, 97, 77. doi: 10.1016/S1385-8947(03)00112-8
(9) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W.Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
(10) Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. J. Phys. Chem. Solids 2002, 63, 1909. doi: 10.1016/S0022-3697(02)00177-4
(11) Su, B. T.; Sun, J. X.; Hu, C. L.; Zhang, X. H.; Fei, P.; Lei, Z. Q.Acta Phys. -Chim. Sin. 2009, 25, 1561. [苏碧桃, 孙佳星, 胡常林, 张小红, 费鹏, 雷自强. 物理化学学报, 2009, 25, 1561.]doi: 10.3866/PKU.WHXB20090750
(12) Xu, L.; Tang, C. Q.; Huang, Z. B. Acta Phys. -Chim. Sin. 2010,26, 1401. [徐凌, 唐超群, 黄宗斌. 物理化学学报, 2010,26, 1401.] doi: 10.3866/PKU.WHXB20100526
(13) Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J. M. Langmuir1994, 10, 643. doi: 10.1021/la00015a010
(14) Osterwalder, J.; Droubay, T.; Kaspar, T.;Williams, J.;Wang, C.M.; Chambers, S. A. Thin Solid Films 2005, 484, 289.doi: 10.1016/j.tsf.2005.02.028
(15) Nishimura, A.; Mitsui, G.; Nakamura, K.; Hirota, M.; Hu, E. Int. J. Photoenergy 2012, 2012, 1. doi: 10.1155/2012/184169
(16) Wu, S. X.; Ma, Z.; Qin, Y. N.; Qi, X. Z.; Liang, Z. C. Acta Phys. -Chim. Sin. 2004, 20, 138. [吴树新, 马智, 秦永宁,齐晓周, 梁珍成. 物理化学学报, 2004, 20, 138.] doi: 10.3866/PKU.WHXB201210082
(17) Irie, H.; Shibanuma, T.; Kamiya, K.; Miura, S.; Yokoyama, T.;Hashimoto, K. Appl. Catal. B-Environ. 2010, 96, 142.doi: 10.1016/j.apcatb.2010.02.011
(18) Tian, B.; Li, C.; Zhang, J. Chem. Eng. J. 2012, 191, 402.doi: 10.1016/j.cej.2012.03.038
(19) Zhu, J. F.; Deng, Z. G.; Chen, F.; Zhang, J. L.; Chen, H. J.;Anpo, M.; Huang, J. Z.; Zhang, L. Z. Appl. Catal. B-Environ.2006, 62, 329. doi: 10.1016/j.apcatb.2005.08.013
(20) Herrmann, J. M. New J. Chem. 2012, 36, 883. doi: 10.1039/c2nj20914d
(21) Ohno, T.; Sarukawa, K.; Matsumura, M. New J. Chem. 2002,26, 1167. doi: 10.1039/b202140d
(22) Taguchi, T.; Saito, Y.; Sarukawa, K.; Ohno, T.; Matsumura, M.New J. Chem. 2003, 27, 1304. doi: 10.1039/b304518h
(23) Herrmann, J. M. Appl. Catal. B-Environ. 2010, 99, 461.doi: 10.1016/j.apcatb.2010.05.012
(24) Diebold, U. Surf. Sci. Rep. 2003, 48, 53. doi: 10.1016/S0167-5729(02)00100-0
(25) He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Nat. Mater. 2009, 8, 585. doi: 10.1038/nmat2466
(26) Diebold, U.; Anderson, J. F.; Ng, K. O.; Vanderbilt, D. Phys. Rev. Lett. 1996, 77, 1322. doi: 10.1103/PhysRevLett.77.1322
(27) Ohsawa, T.; Yamamoto, Y.; Sumiya, M.; Matsumoto, Y.;Koinuma, H. Langmuir 2004, 20, 3018. doi: 10.1021/la034794h
(28) Bikondoa, O.; Pang, C. L.; Ithnin, R.; Muryn, C. A.; Onishi, H.;Thornton, G. Nat. Mater. 2006, 5, 189. doi: 10.1038/nmat1592
(29) Papageorgiou, A. C.; Beglitis, N. S.; Pang, C. L.; Teobaldi, G.;Cabailh, G.; Chen, Q.; Fisher, A. J.; Hofer,W. A.; Thornton, G.Proc. Natl. Acad. Sci. 2010, 107, 2391. doi: 10.1073/pnas.0911349107
(30) Acharya, D. P.; Camillone, N., III; Sutter, P. J. Phys. Chem. C2011, 115, 12095. doi: 10.1021/jp202476v
(31) Cheung, S. H.; Nachimuthu, P.; Engelhard, M. H.;Wang, C. M.;Chambers, S. A. Surf. Sci. 2008, 602, 133. doi: 10.1016/j.susc.2007.09.061
(32) Tanner, R. E.; Liang, Y.; Altman, E. I. Surf. Sci. 2002, 506, 251.doi: 10.1016/S0039-6028(02)01388-2
(33) Maurice, V.; Cadot, S.; Marcus, P. Surf. Sci. 2000, 458, 195.doi: 10.1016/S0039-6028(00)00439-8
(34) Borodin, A.; Reichling, M. Phys. Chem. Chem. Phys. 2011, 13,15442. doi: 10.1039/c0cp02835e
(35) Zhao, Z. Y.; Liu, Q. J.; Zhang, J.; Zhu, Z. Q. Acta Phys. Sin.2007, 56, 6592. [赵宗彦, 柳清菊, 张瑾, 朱忠其. 物理学报, 2007, 56, 6592.]
(36) Zhou, C.; Ren, Z.; Tan, S.; Ma, Z.; Mao, X.; Dai, D.; Fan, H.;Yang, X.; LaRue, J.; Cooper, R.;Wodtke, A. M.;Wang, Z.; Li,Z.;Wang, B.; Yang, J.; Hou, J. J. Chem. Sci. 2010, 1, 575.doi: 10.1039/c0sc00316f
(37) Tan, S. J. Characterization of Catalytic and PhotocatalyticReactions on Rutile TiO2(110) Surface at the Single-moleculeLevel. Ph. D. Dissertation, University of Science and Technologyof China, Hefei, 2012. [谭世倞. 金红石TiO2(110)表面催化反应和光化学过程的单分子尺度微观表征[D]. 合肥: 中国科学技术大学, 2012.]
(38) de Armas, R. S.; Oviedo, J.; San Miguel, M. A.; Sanz, J. F.J. Phys. Chem. C 2007, 111, 10023. doi: 10.1021/jp0717701
(39) Tan, S.; Feng, H.; Ji, Y.;Wang, Y.; Zhao, J.; Zhao, A.;Wang, B.;Luo, Y.; Yang, J.; Hou, J. J. Am. Chem. Soc. 2012, 134, 9978.doi: 10.1021/ja211919k

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] LI Jiao, CHEN Zhong. First-Principles Study on the Electronic and Photocatalytic Properties of Ag3XO4 (X = P, As, V)[J]. Acta Phys. Chim. Sin., 2017, 33(5): 941-948.
[3] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[4] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[5] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[6] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[7] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[8] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[9] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[10] LIANG Dong-Mei, LENG Xia, MA Yu-Chen. Quasiparticle Band Structures and Optical Properties of Graphitic Carbon Nitrides[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1967-1976.
[11] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[12] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[13] LU Xiao-Qing, ZHAO Zi-Gang, LI Ke, WEI Shu-Xian, QU Yuan-Yuan, NIU Yong-Qiang, LIU Xue-Feng. First-Principles Investigation of the Structural and Photoelectronic Properties of CH3NH3PbxSn1-xI3 Mixed Perovskites[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1439-1445.
[14] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[15] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.