Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (08): 1681-1690    DOI: 10.3866/PKU.WHXB201305223
ELECTROCHEMISTRY AND NEW ENERGY     
Hydrothermal Synthesis of Partially Reduced Graphene Oxide-K2Mn4O8 Nanocomposites as Supercapacitors
LI Le1, HE Yun-Qiu1,2, CHU Xiao-Fei1, LI Yi-Ming1, SUN Fang-Fang1, HUANG He-Zhou1
1 School of Material Science and Engineering, Tongji University, Shanghai 200092, P. R. China;
2 Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 200092, P. R. China
Download:   PDF(1104KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nanocomposites of partially reduced graphene oxide (GO)-K2Mn4O8 were synthesized via a hydrothermal process at different temperatures and molar feed ratios of GO to KMnO4. X-ray diffraction (XRD) analysis confirmed that both α-MnO2 and a novel crystal phase of K2Mn4O8 were obtained under the investigated hydrothermal conditions. X-ray photoelectron spectroscopy (XPS) revealed diverse changes of the oxygen-containing functional groups on the surface of GO depending on temperature and molar feed ratio. The microstructure of the composites was studied to help understand their electrochemical properties. A flaky structure of reduced graphene oxide (rGO) covered by nanoparticles was observed by scanning electron microscope (SEM), which was considered to be favorable for charge transfer. The capacitive properties of the composites were compared using cyclic voltammograms and galvanostatic charge-discharge measurements. The specific capacitance of the optimal sample was calculated to be 251 F·g-1 with an energy density of 32 Wh·kg-1 and a power density of 18.2 kW·kg-1 in 1 mol·L-1 Na2SO4 electrolyte at a current density of 1 A·g-1 between 0 and 1 V. Moreover, the capacitance retention ratio of this sample remained at 88% after 1000 cycles at a high current density of 5 A·g-1.



Key wordsSupercapacitor      Reduced graphene oxide      Potassium manganese oxide      Manganese oxide      Composite      Capacitive behavior     
Received: 27 February 2013      Published: 22 May 2013
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51175162).

Corresponding Authors: HE Yun-Qiu     E-mail: heyunqiu@tongji.edu.cn
Cite this article:

LI Le, HE Yun-Qiu, CHU Xiao-Fei, LI Yi-Ming, SUN Fang-Fang, HUANG He-Zhou. Hydrothermal Synthesis of Partially Reduced Graphene Oxide-K2Mn4O8 Nanocomposites as Supercapacitors. Acta Phys. Chim. Sin., 2013, 29(08): 1681-1690.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201305223     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I08/1681

(1) Wang, G.; Zhang, L.; Zhang, J. Chem. Soc. Rev. 2012, 41 (2),797. doi: 10.1039/c1cs15060j
(2) Wang, X.; Li, G.; Chen, Z.; Augustyn, V.; Ma, X.;Wang, G.;Dunn, B.; Lu, Y. Adv. Energy Mater. 2011, 1 (6), 1089. doi: 10.1002/aenm.201100332
(3) Chen, Z.;Wen, J.; Yan, C.; Rice, L.; Sohn, H.; Shen, M.; Cai,M.; Dunn, B.; Lu, Y. Adv. Energy Mater. 2011, 1 (4), 551. doi: 10.1002/aenm.201100114
(4) Guo, P. Z.; Ji, Q. Q.; Zhang, L. L.; Zhao, S. Y.; Zhao, X. S. ActaPhys. -Chim. Sin. 2011, 27 (12), 2836. [郭培志, 季倩倩, 张丽莉, 赵善玉, 赵修松. 物理化学学报, 2011, 27 (12), 2836.] doi: 10.3866/PKU.WHXB20112836
(5) Lin, Y. H.;Wei, T. Y.; Chien, H. C.; Lu, S. Y. Adv. Energy Mater.2011, 1 (5), 901. doi: 10.1002/aenm.201100256
(6) Yu, G.; Hu, L.; Vosgueritchian, M.;Wang, H.; Xie, X.;McDonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. Nano Lett. 2011, 11 (7), 2905. doi: 10.1021/nl2013828
(7) Sharma, P.; Bhatti, T. S. Energy Convers. Manag. 2010, 51 (12),2901. doi: 10.1016/j.enconman.2010.06.031
(8) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38 (9), 2520.doi: 10.1039/b813846j
(9) Ghosh, A.; Lee, Y. H. ChemSusChem 2012, 5 (3), 480. doi: 10.1002/cssc.201100645
(10) Sop?i?, S.; Mandi?, Z.; Inzelt, G.; Rokovi?, M. K.; Meštrovi?,E. J. Power Sources 2011, 196 (10), 4849. doi: 10.1016/j.jpowsour.2011.01.070
(11) Bharali, P.; Kuratani, K.; Takeuchi, T.; Kiyobayashi, T.;Kuriyama, N. J. Power Sources 2011, 196 (18), 7878. doi: 10.1016/j.jpowsour.2011.03.097
(12) Zhang, Y.; Feng, H.;Wu, X.;Wang, L.; Zhang, A.; Xia, T.;Dong, H.; Li, X.; Zhang, L. Int. J. Hydrog. Energy 2009, 34 (11), 4889. doi: 10.1016/j.ijhydene.2009.04.005
(13) Hu, Y. Y.; Hu, Z. A.; Zhang, Y. J.; Lu, A. L.; Xu, H.; Zhang, Z.Y.; Yang, Y. Y.; Li, L.;Wu, H. Y. Acta Phys. -Chim. Sin. 2013,29 (2), 305. [胡英瑛, 胡中爱, 张亚军, 鲁爱莲, 徐欢, 张子瑜, 杨玉英, 李丽, 吴红英. 物理化学学报, 2013, 29 (2),305.] doi: 10.3866/PKU.WHXB201211201
(14) Lee, J.W.; Ahn, T.; Kim, J. H.; Ko, J. M.; Kim, J. D.Electrochim. Acta 2011, 56 (13), 4849. doi: 10.1016/j.electacta.2011.02.116
(15) Xu, J.; Gao, L.; Cao, J.;Wang,W.; Chen, Z. J. Solid StateElectrochem. 2011, 15 (9), 2005. doi: 10.1007/s1008-010-1222-6
(16) Fan, Z.; Chen, J.; Cui, K.; Sun, F.; Xu, Y.; Kuang, Y.Electrochim. Acta 2007, 52 (9), 2959. doi: 10.1016/j.electacta.2006.09.029
(17) Burke, A. Electrochim. Acta 2007, 53 (3), 1083. doi: 10.1016/j.electacta.2007.01.011
(18) Cottineau, T.; Toupin, M.; Delahaye, T.; Brousse, T.; Bélanger,D. Appl. Phys. A 2006, 82 (4), 599. doi: 10.1007/s00339-005-3401-3
(19) Li, Y.; Xie, H.;Wang, J.; Chen, L. Mater. Lett. 2011, 65 (2), 403.doi: 10.1016/j.matlet.2010.10.048
(20) Chen, Z.; Jiao, Z.; Pan, D.; Li, Z.;Wu, M.; Shek, C. H.;Wu, C.M.; Lai, J. K. Chem. Rev. 2012, 112 (7), 3833. doi: 10.1021/cr2004508
(21) Beaudrouet, E.; Le Gal La Salle, A.; Guyomard, D. Electrochim.Acta 2009, 54 (4), 1240. doi: 10.1016/j.electacta.2008.08.072
(22) Zhang, J.; Jiang, J.; Zhao, X. S. J. Phys. Chem. C 2011, 115 (14), 6448. doi: 10.1021/jp200724h
(23) Yu, G.; Hu, L.; Liu, N.;Wang, H.; Vosgueritchian, M.; Yang, Y.;Cui, Y.; Bao, Z. Nano Lett. 2011, 11 (10), 4438. doi: 10.1021/nl2026635
(24) Wang, Y. T.; Lu, A. H.; Zhang, H. L.; Li,W. C. J. Phys. Chem. C2011, 115 (13), 5413. doi: 10.1021/jp110938x
(25) Wang, H.; Peng, C.; Peng, F.; Yu, H.; Yang, J. Mater. Sci. Eng. B2011, 176 (14), 1073. doi: 10.1016/j.mseb.2011.05.043
(26) Zhu, G.; Li, H.; Deng, L.; Liu, Z. H. Materials Letters 2010, 64 (16), 1763. doi: 10.1016/j.matlet.2010.05.019
(27) Pang, X.; Ma, Z. Q.; Zuo, L. Acta Phys. -Chim. Sin. 2009, 25 (12), 2433. [庞旭, 马正青, 左列. 物理化学学报, 2009,25 (12), 2433.] doi: 10.3866/PKU.WHXB20091211
(28) Zhao, J. Z.; Tao, Z. L.; Liang, J.; Chen, J. Cryst. Growth Des.2008, 8 (8), 2799. doi: 10.1021/cg701044b
(29) Devaraj, S.; Munichandraiah, N. J. Phys. Chem. C 2008, 112 (11), 4406. doi: 10.1021/jp7108785
(30) Yu, J.; Zhao, T.; Zeng, B. Electrochem. Commun. 2008, 10 (9),1318. doi: 10.1016/j.elecom.2008.06.028
(31) Qiu, G.; Huang, H.; Dharmarathna, S.; Benbow, E.; Stafford, L.;Suib, S. L. Chem. Mater. 2011, 23 (17), 3892. doi: 10.1021/cm2011692
(32) Yang, Y. Y.; Xiao, L. F.; Zhao, Y. Q.;Wang, F. Y. Int. J.Electrochem. Sci. 2008, 3 (1), 67.
(33) Subramanian, V.; Zhu, H.W.; Vajtai, R.; Ajayan, P. M.;Wei, B.Q. J. Phys. Chem. B 2005, 109 (43), 20207. doi: 10.1021/jp0543330
(34) Xiao,W.;Wang, D. L.; Lou, X.W. J. Phys. Chem. C 2010, 114 (3), 1694. doi: 10.1021/jp909386d
(35) Xu, M.; Kong, L.; Zhou,W.; Li, H. J. Phys. Chem. C 2007, 111 (51), 19141. doi: 10.1021/jp076730b
(36) Wang, H.; Lu, Z.; Qian, D.; Li, Y.; Zhang,W. Nanotechnology2007, 18 (11), 115616. doi: 10.1088/0957-4484/18/11/115616
(37) Li, Z.;Wang, J.; Liu, S.; Liu, X.; Yang, S. J. Power Sources2011, 196 (19), 8160. doi: 10.1016/j.jpowsour.2011.05.036
(38) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C.Carbon 2011, 49 (9), 2917. doi: 10.1016/j.carbon.2011.02.068
(39) Yan, J.; Fan, Z.;Wei, T.; Qian,W.; Zhang, M.;Wei, F. Carbon2010, 48 (13), 3825. doi: 10.1016/j.carbon.2010.06.047
(40) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.;Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.;Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011,332 (6037), 1537. doi: 10.1126/science.1200770
(41) Miller, J. R.; Outlaw, R. A.; Holloway, B. C. Science 2010, 329 (5999), 1637. doi: 10.1126/science.1194372
(42) Le, L. T.; Ervin, M. H.; Qiu, H.; Fuchs, B. E.; Lee,W. Y.Electrochem. Commun. 2011, 13 (4), 355. doi: 10.1016/j.elecom.2011.01.023
(43) Huang, X.; Yin, Z.;Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.;Boey, F.; Zhang, H. Small 2011, 7 (14), 1876. doi: 10.1002/smll.201002009
(44) Luo, D. C.; Zhang, G. X.; Liu, J. F.; Sun, X. M. J. Phys. Chem.C 2011, 115 (23), 11327. doi: 10.1021/jp110001y
(45) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.;Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu,W.; Tour, J. M. ACSNano 2010, 4 (8), 4806. doi: 10.1021/nn1006368
(46) Tang, N.; Tian, X.; Yang, C.; Pi, Z. Materials Research Bulletin2009, 44 (11), 2062. doi: 10.1016/j.materresbull.2009.07.012
(47) Chen,W. F.; Yan, L. F.; Bangal, P. R. J. Phys. Chem. C 2010,114 (47), 19885. doi: 10.1021/jp107131v
(48) Nesbitt, H.W.; Banerjee, D. American Mineralogist 1998, 83 (3-4), 305.
(49) Gao, J.; Tong, X.; Li, X.; Miao, H.; Xu, J. J. Chem. Technol.Biotechnol. 2007, 82 (7), 620. doi: 10.1002/jctb.1717
(50) Xia, H.;Wang, Y.; Lin, J.; Lu, L. Nanoscale Res. Lett. 2012, 7 (1), 33. doi: 10.1186/1556-276X-7-33
(51) Di Fabio, A.; Mastragostino, A. G. M.; Soavi, F. J. Electrochem.Soc. 2001, 148, A845.
(52) Tang, N.; Tian, X.; Yang, C.; Pi, Z. Mater. Res. Bull. 2009, 44 (11), 2062. doi: 10.1016/j.materresbull.2009.07.012

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1715-1720.
[4] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[5] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[6] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[7] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys. Chim. Sin., 2017, 33(5): 968-975.
[8] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[9] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[10] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(2): 435-440.
[11] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[12] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[13] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[14] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[15] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.