Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (08): 1819-1826    DOI: 10.3866/PKU.WHXB201305281
PHYSICAL CHEMISTRY OF MATERIALS     
Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres
SHANG Yang, CHEN Yang, SHI Zhan-Bin, ZHANG Dong-Feng, GUO Lin
School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
Download:   PDF(3443KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Au/Cu2O heterogeneous spheres (HGS) were prepared by in situ reduction of preadsorbed AuCl4- on the surface of Cu2O mesoporous spheres (MPS) linked by L-cysteine. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), and N2 physical adsorption. The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methylene blue (MB) under visible light (λ>400 nm) irradiation. The experimental results revealed that the Cu2O MPS kept their mesoporous structure after loading with Au, and small Au nanoparticles (NPs) with a diameter of ~4 nm were identified on the surface of the MPSs. N2 physical adsorption analysis showed that the pore size distributions of Cu2O MPSs were unchanged after loading with Au NPs. Using ethanol as a solvent retarded the redox reaction between AuCl4- and Cu2O, avoiding damage to the mesoporous structures. The Au/Cu2O HGSs exhibited higher visible-light photocatalytic activity for the degradation of methylene blue than the pure Cu2O MPSs. The enhanced photocatalytic efficiency of the Au/Cu2O HGSs was attributed to rapid charge transfer from Cu2O to the loaded Au NPs as well as the surface plasmon resonance of Au NPs.



Key wordsPhotocatalyst      Electron and hole separation      Cuprous oxide      Gold      Heterojunction     
Received: 06 February 2013      Published: 28 May 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2010CB934700), National Natural Science Foundation of China (21173015), Fundamental Research Funds for the Central Universities, China (YWF-11-03-Q-085), and Innovation of BUAA for PhD Graduates, China.

Corresponding Authors: ZHANG Dong-Feng, GUO Lin     E-mail: dfzhang@buaa.edu.cn;guolin@buaa.edu.cn
Cite this article:

SHANG Yang, CHEN Yang, SHI Zhan-Bin, ZHANG Dong-Feng, GUO Lin. Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres. Acta Phys. Chim. Sin., 2013, 29(08): 1819-1826.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201305281     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I08/1819

(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(2) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001,414, 625. doi: 10.1038/414625a
(3) Wang, Z. H.; Zhao, S. P., Zhu, S. Y.; Sun Y. L.; Fang, M.CrystEngComm 2011, 13, 2262. doi: 10.1039/c0ce00681e
(4) Fan, H. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2012,28, 2214. [范海滨, 张东凤, 郭林. 物理化学学报, 2012,28, 2214.] doi: 10.3866/PKU.WHXB201206122
(5) Pan, Y. L.; Deng, S. Z.; Polavarapu, L.; Gao, N. Y.; Yuan, P. Y.;Sow, C. H.; Xu, Q. H. Langmuir 2012, 28, 12304. doi: 10.1021/la301813v
(6) Kochuveedu, S. T.; Oh, J. H.; Do, Y. R.; Kim, D. H. Chem. Eur. J. 2012, 18, 7467.
(7) Shang, Y.; Sun, D.; Shao, Y. M.; Zhang, D. F.; Guo, L.; Yang, S.H. Chem. Eur. J. 2012, 18, 14261. doi: 10.1002/chem.v18.45
(8) Subramanian, V.;Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc.2004, 126, 4943. doi: 10.1021/ja0315199
(9) Tong, G. X.; Guan J. G.; Xiao, Z. D.; Huang, X.; Guan, Y.J. Nanopart. Res. 2010, 12, 3025. doi: 10.1007/s11051-010-9897-2
(10) Tong, G. X.; Guan J. G.; Zhang, Q. J. Mater. Chem. Phys. 2011,127, 371. doi: 10.1016/j.matchemphys.2011.02.021
(11) Wei, S. Q.; Ma, Y. Y.; Chen, Y. Y.; Liu, L.; Liu, Y.; Shao, Z. C.J. Hazard. Mater. 2011, 194, 243. doi: 10.1016/j.jhazmat.2011.07.096
(12) Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.;Tanaka, A.; Kondo J. N.; Domen, K. Chem. Commun. 1998, 357.
(13) Zhou,W.W.; Yan, B.; Cheng, C.W.; Cong, C. X.; Hu, H. L.;Fan, H. J.; Yu, T. CrystEngComm 2009, 11, 2291. doi: 10.1039/b912034n
(14) Cao, Y. B.; Fan, J. M.; Bai, L. Y.; Yuan, F. L.; Chen, Y. F. Cryst. Growth Des. 2010, 10, 232. doi: 10.1021/cg9008637
(15) Li, H.; Ni, Y. H.; Cai, Y. F.; Zhang, L.; Zhou, J. Z.; Hong, J. M.;Wei, X.W. J. Mater. Chem. 2009, 19, 594. doi: 10.1039/b818574c
(16) Xu, H. L.;Wang,W. Z.; Zhu,W. J. Phys. Chem. B 2006, 110,13829. doi: 10.1021/jp061934y
(17) Sun, S. D.; Zhang, H.; Song, X. P.; Liang, S. H.; Kong, C. C.;Yang, Z. M. CrystEngComm 2011, 13, 6040. doi: 10.1039/c1ce05597f
(18) Deo, M.; Shinde, D.; Yengantiwar, A.; Jog, J.; Hannoyer, B.;Sauvage, X.; Moreb, M.; Ogale, S. J. Mater. Chem. 2012, 22,17055. doi: 10.1039/c2jm32660d
(19) Wang, Y. B.; Zhang, Y. N.; Zhao, G. H.; Tian, H. Y.; Shi, H. J.;Zhou, T. C. ACS Appl. Mater. Interfaces 2012, 4, 3965.doi: 10.1021/am300795w
(20) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y. C.; Loo, S. C. J.; Xue,C. ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b
(21) Georgekutty, R.; Seery, M. K.; Pillai, S. C. J. Phys. Chem. C2008, 112, 13563. doi: 10.1021/jp802729a
(22) Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.;Wei,J. Y.; Whangbo, M. H. Angew. Chem. Int. Edit. 2008, 47, 7931.doi: 10.1002/anie.v47:41
(23) Jiang, J.; Zhang, L. Z. Chem. Eur. J. 2012, 18, 6360.doi: 10.1002/chem.201102606
(24) Wang, H.; You, T. T.; Shi,W.W.; Li, J. H.; Guo, L. J. Phys. Chem. C 2012, 116, 6490. doi: 10.1021/jp212303q
(25) Li, X. Z.; Li, F. B. Environ. Sci. Technol. 2001, 35, 2381.doi: 10.1021/es001752w
(26) Zhang, H.;Wang, G.; Chen, D.; Lv, X. J.; Li, J. H. Chem. Mater.2008, 20, 6543. doi: 10.1021/cm801796q
(27) Hou,W. B.; Cronin, S. B. Adv. Funct. Mater. 2012, 23, 1612.
(28) Hirakawa, T.; Kamat, P. V. J. Am. Chem. Soc. 2005, 127, 3928.doi: 10.1021/ja042925a
(29) Costi, R.; Saunders, A. E.; Elmalem, E.; Salant, A.; Banin, U.Nano Lett. 2008, 8, 637. doi: 10.1021/nl0730514
(30) Jin, Z.; Xiao, M. D.; Bao, Z. H.;Wang, P.;Wang, J. F. Angew. Chem. Int. Edit. 2012, 51, 6406. doi: 10.1002/anie.201106948
(31) Li, C. C.; Zheng, Y. P.;Wang, T. H. J. Mater. Chem. 2012, 22,13216. doi: 10.1039/c2jm16921e
(32) Shang, Y.; Zhang, D. F.; Guo, L. J. Mater. Chem. 2012, 22, 856.doi: 10.1039/c1jm14258e
(33) Pang, M. L.;Wang, Q. X.; Zeng, H. C. Chem. Eur. J. 2012, 46,14605.
(34) Zhang, D. F.; Niu, L. Y.; Jiang, L.; Yin, P. G.; Sun, L. D.; Zhang,H.; Zhang, R.; Guo, L.; Yan, C. H. J. Phys. Chem. C 2008, 112,16011. doi: 10.1021/jp803102h
(35) Zhang, D. F.; Zhang, H.; Shang, Y.; Guo, L. Cryst. Growth Des.2011, 11, 3748. doi: 10.1021/cg101283w
(36) Zhang, J.; Liu, X. H.;Wang, L.W.; Yang, T. L.; Guo, X. Z.;Wu,S. H.;Wang, S. R.; Zhang, S. M. J. Phys. Chem. C 2011, 115,5352. doi: 10.1021/jp110421v
(37) Sun, D.; Yin, P. G.; Guo, L. Acta Phys. -Chim. Sin. 2011, 27,1543. [孙都, 殷鹏刚, 郭林. 物理化学学报, 2011, 27,1543.] doi: 10.3866/PKU.WHXB20110619
(38) Gu, J.; Zhang, Y.W.; Tao, F. Chem. Soc. Rev. 2012, 41, 8050.doi: 10.1039/c2cs35184f
(39) Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X.W. J. Am. Chem. Soc. 2011, 133, 4738. doi: 10.1021/ja2004329
(40) Peng, C.; Jiang, B.W.; Liu, Q.; Guo, Z.; Xu, Z. J.; Huang, Q.;Xu, H. J.; Tai, R. Z.; Fan, C. H. Energy Environ. Sci. 2011, 4,2035. doi: 10.1039/c0ee00495b
(41) Zuo, X. L.; Peng, C.; Huang, Q.; Song, S. P.;Wang, L. H.; Li,D.; Fan, C. H. Nano Res. 2009, 2, 617. doi: 10.1007/s12274-009-9062-3
(42) Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. J. Phys. Chem. C2011, 115, 9136. doi: 10.1021/jp2009989
(43) Subramanian, V.;Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc.2004, 126, 4943. doi: 10.1021/ja0315199
(44) Wu, J. L.; Chen, F. C.; Hsiao, Y. S.; Chien, F. C.; Chen, P. L.;Kuo, C. H.; Huang, M. H.; Hsu, C. S. ACS Nano 2011, 5, 959.doi: 10.1021/nn102295p

[1] ZHOU Yang, LI Gao. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1297-1309.
[2] HU Xue-Jiao, GAO Guan-Bin, ZHANG Ming-Xi. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1324-1337.
[3] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[4] WANG Li, LU Dan-Feng, GAO Ran, CHENG Jin, ZHANG Zhe, QI Zhi-Mei. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1223-1229.
[5] CHEN Xin, HU Shao-Zheng, LI Ping, LI Wei, MA Hong-Fei, LU Guang. Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2532-2541.
[6] CHEN Xiao-Yu, WANG Jing-Dong, YU An-Chi. Effect of Surrounding Media on Ultrafast Plasmon Dynamics of Gold Nanoparticles[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2184-2190.
[7] ZHANG Ji-Ping, CHENG Shuo-Zhen, LI Xue-Feng, DONG Jin-Feng. pH- and Temperature-Induced Micellization of the Dual Hydrophilic Block Copolymer Poly(methacrylate acid)-b-poly(N-(2-methacryloylxyethyl) pyrrolidone) in Aqueous Solution[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2018-2026.
[8] TANG Wei, WANG Jing. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1087-1104.
[9] ZUO Hui-Wen, LU Chun-Hai, REN Yu-Rong, LI Yi, ZHANG Yong-Fan, CHEN Wen-Kai. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1183-1190.
[10] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[11] TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming, LIANG Min, CHEN Li-Ying. An Investigation into the Reaction Kinetics of Cubic Nano-Cu2O in Theory and Experiment[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2891-2897.
[12] TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming. Effects of Particle Size and Temperature on Surface Thermodynamic Functions of Cubic Nano-Cu2O[J]. Acta Phys. Chim. Sin., 2016, 32(11): 2678-2684.
[13] CHANG Xiao-Xia, GONG Jin-Long. On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting[J]. Acta Phys. Chim. Sin., 2016, 32(1): 2-13.
[14] LI Shu-Shuang, TAO Lei, ZHANG Qi, LIU Yong-Mei, CAO Yong. Recent Advances in Nano-Gold-Catalyzed Green Synthesis and Clean Reactions[J]. Acta Phys. Chim. Sin., 2016, 32(1): 61-74.
[15] LI Xiao-Kun, MA Dong-Dong, ZHENG Yan-Ping, ZHANG Hong, DING Ding, CHEN Ming-Shu, WAN Hui-Lin. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1753-1760.