Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (08): 1819-1826    DOI: 10.3866/PKU.WHXB201305281
PHYSICAL CHEMISTRY OF MATERIALS     
Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres
SHANG Yang, CHEN Yang, SHI Zhan-Bin, ZHANG Dong-Feng, GUO Lin
School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China
Download:   PDF(3443KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Au/Cu2O heterogeneous spheres (HGS) were prepared by in situ reduction of preadsorbed AuCl4- on the surface of Cu2O mesoporous spheres (MPS) linked by L-cysteine. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), and N2 physical adsorption. The photocatalytic activity of the samples was evaluated by photocatalytic degradation of methylene blue (MB) under visible light (λ>400 nm) irradiation. The experimental results revealed that the Cu2O MPS kept their mesoporous structure after loading with Au, and small Au nanoparticles (NPs) with a diameter of ~4 nm were identified on the surface of the MPSs. N2 physical adsorption analysis showed that the pore size distributions of Cu2O MPSs were unchanged after loading with Au NPs. Using ethanol as a solvent retarded the redox reaction between AuCl4- and Cu2O, avoiding damage to the mesoporous structures. The Au/Cu2O HGSs exhibited higher visible-light photocatalytic activity for the degradation of methylene blue than the pure Cu2O MPSs. The enhanced photocatalytic efficiency of the Au/Cu2O HGSs was attributed to rapid charge transfer from Cu2O to the loaded Au NPs as well as the surface plasmon resonance of Au NPs.



Key wordsPhotocatalyst      Electron and hole separation      Cuprous oxide      Gold      Heterojunction     
Received: 06 February 2013      Published: 28 May 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2010CB934700), National Natural Science Foundation of China (21173015), Fundamental Research Funds for the Central Universities, China (YWF-11-03-Q-085), and Innovation of BUAA for PhD Graduates, China.

Corresponding Authors: ZHANG Dong-Feng, GUO Lin     E-mail: dfzhang@buaa.edu.cn;guolin@buaa.edu.cn
Cite this article:

SHANG Yang, CHEN Yang, SHI Zhan-Bin, ZHANG Dong-Feng, GUO Lin. Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres. Acta Phys. -Chim. Sin., 2013, 29(08): 1819-1826.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201305281     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I08/1819

(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0
(2) Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Nature 2001,414, 625. doi: 10.1038/414625a
(3) Wang, Z. H.; Zhao, S. P., Zhu, S. Y.; Sun Y. L.; Fang, M.CrystEngComm 2011, 13, 2262. doi: 10.1039/c0ce00681e
(4) Fan, H. B.; Zhang, D. F.; Guo, L. Acta Phys. -Chim. Sin. 2012,28, 2214. [范海滨, 张东凤, 郭林. 物理化学学报, 2012,28, 2214.] doi: 10.3866/PKU.WHXB201206122
(5) Pan, Y. L.; Deng, S. Z.; Polavarapu, L.; Gao, N. Y.; Yuan, P. Y.;Sow, C. H.; Xu, Q. H. Langmuir 2012, 28, 12304. doi: 10.1021/la301813v
(6) Kochuveedu, S. T.; Oh, J. H.; Do, Y. R.; Kim, D. H. Chem. Eur. J. 2012, 18, 7467.
(7) Shang, Y.; Sun, D.; Shao, Y. M.; Zhang, D. F.; Guo, L.; Yang, S.H. Chem. Eur. J. 2012, 18, 14261. doi: 10.1002/chem.v18.45
(8) Subramanian, V.;Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc.2004, 126, 4943. doi: 10.1021/ja0315199
(9) Tong, G. X.; Guan J. G.; Xiao, Z. D.; Huang, X.; Guan, Y.J. Nanopart. Res. 2010, 12, 3025. doi: 10.1007/s11051-010-9897-2
(10) Tong, G. X.; Guan J. G.; Zhang, Q. J. Mater. Chem. Phys. 2011,127, 371. doi: 10.1016/j.matchemphys.2011.02.021
(11) Wei, S. Q.; Ma, Y. Y.; Chen, Y. Y.; Liu, L.; Liu, Y.; Shao, Z. C.J. Hazard. Mater. 2011, 194, 243. doi: 10.1016/j.jhazmat.2011.07.096
(12) Hara, M.; Kondo, T.; Komoda, M.; Ikeda, S.; Shinohara, K.;Tanaka, A.; Kondo J. N.; Domen, K. Chem. Commun. 1998, 357.
(13) Zhou,W.W.; Yan, B.; Cheng, C.W.; Cong, C. X.; Hu, H. L.;Fan, H. J.; Yu, T. CrystEngComm 2009, 11, 2291. doi: 10.1039/b912034n
(14) Cao, Y. B.; Fan, J. M.; Bai, L. Y.; Yuan, F. L.; Chen, Y. F. Cryst. Growth Des. 2010, 10, 232. doi: 10.1021/cg9008637
(15) Li, H.; Ni, Y. H.; Cai, Y. F.; Zhang, L.; Zhou, J. Z.; Hong, J. M.;Wei, X.W. J. Mater. Chem. 2009, 19, 594. doi: 10.1039/b818574c
(16) Xu, H. L.;Wang,W. Z.; Zhu,W. J. Phys. Chem. B 2006, 110,13829. doi: 10.1021/jp061934y
(17) Sun, S. D.; Zhang, H.; Song, X. P.; Liang, S. H.; Kong, C. C.;Yang, Z. M. CrystEngComm 2011, 13, 6040. doi: 10.1039/c1ce05597f
(18) Deo, M.; Shinde, D.; Yengantiwar, A.; Jog, J.; Hannoyer, B.;Sauvage, X.; Moreb, M.; Ogale, S. J. Mater. Chem. 2012, 22,17055. doi: 10.1039/c2jm32660d
(19) Wang, Y. B.; Zhang, Y. N.; Zhao, G. H.; Tian, H. Y.; Shi, H. J.;Zhou, T. C. ACS Appl. Mater. Interfaces 2012, 4, 3965.doi: 10.1021/am300795w
(20) Cao, S.W.; Yin, Z.; Barber, J.; Boey, F. Y. C.; Loo, S. C. J.; Xue,C. ACS Appl. Mater. Interfaces 2012, 4, 418. doi: 10.1021/am201481b
(21) Georgekutty, R.; Seery, M. K.; Pillai, S. C. J. Phys. Chem. C2008, 112, 13563. doi: 10.1021/jp802729a
(22) Wang, P.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.;Wei,J. Y.; Whangbo, M. H. Angew. Chem. Int. Edit. 2008, 47, 7931.doi: 10.1002/anie.v47:41
(23) Jiang, J.; Zhang, L. Z. Chem. Eur. J. 2012, 18, 6360.doi: 10.1002/chem.201102606
(24) Wang, H.; You, T. T.; Shi,W.W.; Li, J. H.; Guo, L. J. Phys. Chem. C 2012, 116, 6490. doi: 10.1021/jp212303q
(25) Li, X. Z.; Li, F. B. Environ. Sci. Technol. 2001, 35, 2381.doi: 10.1021/es001752w
(26) Zhang, H.;Wang, G.; Chen, D.; Lv, X. J.; Li, J. H. Chem. Mater.2008, 20, 6543. doi: 10.1021/cm801796q
(27) Hou,W. B.; Cronin, S. B. Adv. Funct. Mater. 2012, 23, 1612.
(28) Hirakawa, T.; Kamat, P. V. J. Am. Chem. Soc. 2005, 127, 3928.doi: 10.1021/ja042925a
(29) Costi, R.; Saunders, A. E.; Elmalem, E.; Salant, A.; Banin, U.Nano Lett. 2008, 8, 637. doi: 10.1021/nl0730514
(30) Jin, Z.; Xiao, M. D.; Bao, Z. H.;Wang, P.;Wang, J. F. Angew. Chem. Int. Edit. 2012, 51, 6406. doi: 10.1002/anie.201106948
(31) Li, C. C.; Zheng, Y. P.;Wang, T. H. J. Mater. Chem. 2012, 22,13216. doi: 10.1039/c2jm16921e
(32) Shang, Y.; Zhang, D. F.; Guo, L. J. Mater. Chem. 2012, 22, 856.doi: 10.1039/c1jm14258e
(33) Pang, M. L.;Wang, Q. X.; Zeng, H. C. Chem. Eur. J. 2012, 46,14605.
(34) Zhang, D. F.; Niu, L. Y.; Jiang, L.; Yin, P. G.; Sun, L. D.; Zhang,H.; Zhang, R.; Guo, L.; Yan, C. H. J. Phys. Chem. C 2008, 112,16011. doi: 10.1021/jp803102h
(35) Zhang, D. F.; Zhang, H.; Shang, Y.; Guo, L. Cryst. Growth Des.2011, 11, 3748. doi: 10.1021/cg101283w
(36) Zhang, J.; Liu, X. H.;Wang, L.W.; Yang, T. L.; Guo, X. Z.;Wu,S. H.;Wang, S. R.; Zhang, S. M. J. Phys. Chem. C 2011, 115,5352. doi: 10.1021/jp110421v
(37) Sun, D.; Yin, P. G.; Guo, L. Acta Phys. -Chim. Sin. 2011, 27,1543. [孙都, 殷鹏刚, 郭林. 物理化学学报, 2011, 27,1543.] doi: 10.3866/PKU.WHXB20110619
(38) Gu, J.; Zhang, Y.W.; Tao, F. Chem. Soc. Rev. 2012, 41, 8050.doi: 10.1039/c2cs35184f
(39) Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X.W. J. Am. Chem. Soc. 2011, 133, 4738. doi: 10.1021/ja2004329
(40) Peng, C.; Jiang, B.W.; Liu, Q.; Guo, Z.; Xu, Z. J.; Huang, Q.;Xu, H. J.; Tai, R. Z.; Fan, C. H. Energy Environ. Sci. 2011, 4,2035. doi: 10.1039/c0ee00495b
(41) Zuo, X. L.; Peng, C.; Huang, Q.; Song, S. P.;Wang, L. H.; Li,D.; Fan, C. H. Nano Res. 2009, 2, 617. doi: 10.1007/s12274-009-9062-3
(42) Zhang, N.; Liu, S. Q.; Fu, X. Z.; Xu, Y. J. J. Phys. Chem. C2011, 115, 9136. doi: 10.1021/jp2009989
(43) Subramanian, V.;Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc.2004, 126, 4943. doi: 10.1021/ja0315199
(44) Wu, J. L.; Chen, F. C.; Hsiao, Y. S.; Chien, F. C.; Chen, P. L.;Kuo, C. H.; Huang, M. H.; Hsu, C. S. ACS Nano 2011, 5, 959.doi: 10.1021/nn102295p

[1] Tatsuya HIGAKI,Rongchao JIN. Structural Evolution Patterns of FCC-Type Gold Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 755-761.
[2] Xiuqing REN,Xinzhang LIN,Xuemei FU,Chao LIU,Jinghui YAN,Jiahui HUANG. Synthesis of High Yield Au21(SR)15 Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 825-829.
[3] Yang ZHOU,Zhimin LI,Kai ZHENG,Gao LI. Controlled Synthesis of Au36(SR)24 (SR = SPh, SC6H4CH3, SCH(CH3)Ph, and SC10H7) Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 786-791.
[4] Min ZHU,Manbo LI,Chuanhao YAO,Nan XIA,Yan ZHAO,Nan YAN,Lingwen LIAO,Zhikun WU. PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 792-798.
[5] Chang HE,Jianhui HOU. Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1202-1210.
[6] Yang ZHOU,Gao LI. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1297-1309.
[7] Xue-Jiao HU,Guan-Bin GAO,Ming-Xi ZHANG. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1324-1337.
[8] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.
[9] Li WANG,Dan-Feng LU,Ran GAO,Jin CHENG,Zhe ZHANG,Zhi-Mei QI. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1223-1229.
[10] . Photocatalytic Production of Hydrogen Peroxide Using g-C3N4 Coated MgO-Al2O3-Fe2O3 Heterojunction Catalysts Prepared by a Novel Molten Salt-Assisted Microwave Process[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2532-2541.
[11] Xiao-Yu CHEN,Jing-Dong WANG,An-Chi YU. Effect of Surrounding Media on Ultrafast Plasmon Dynamics of Gold Nanoparticles[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2184-2190.
[12] . pH- and Temperature-Induced Micellization of the Dual Hydrophilic Block Copolymer Poly(methacrylate acid)-b-poly(N-(2-methacryloylxyethyl) pyrrolidone) in Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2018-2026.
[13] Wei TANG,Jing WANG. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1087-1104.
[14] Hui-Wen ZUO,Chun-Hai LU,Yu-Rong REN,Yi LI,Yong-Fan ZHANG,Wen-Kai CHEN. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1183-1190.
[15] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.