Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (08): 1778-1784    DOI: 10.3866/PKU.WHXB201305302
CATALYSIS AND SURFACE SCIENCE     
Highly Active and Stable Catalyst for Visible Light Hydrogen Production Based on Oxidative Quenching of Eosin Y
LI Bo1,2, LÜ Gong Xuan1
1 Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Tianshui Zhong Road 18, Lanzhou 730000, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(693KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The effects and mechanism of methyl viologen (MV2+) on photocatalytic hydrogen production over an active, stable catalyst sensitized by Eosin Y (EY) under visible light were studied by UV-Vis absorption, fluorescence spectroscopies and photoelectric experiments. The results showed that MV2+ increased the efficiency of electron transfer from excited states of EY to the surface of Pt/TiO2 and suppressed accumulation of unstable intermediate EY3-· by an oxidative and reductive quenching mechanism. MV2+ also improved the activity and stability of photocatalytic hydrogen production by an EY-sensitized Pt/TiO2 system with triethanolamine (TEOA) as an electron donor. The effects of transient photocurrent and concentration of EY on the hydrogen production activity of dye-sensitized systems with and without MV2+ provided further evidence that MV2+ acted as an electron transfer agent to effectively improve photoinduced electron transfer and utilization efficiency.



Key wordsMethyl violet      Activity      Stability      Hydrogen production      Photocatalysis     
Received: 16 April 2013      Published: 30 May 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21173242), National Key Basic Research Program of China (973) (2009CB22003), and National High Technology Research and Development Program of China (863) (2012AA051501).

Corresponding Authors: Lü Gong Xuan     E-mail: gxlu@lzb.ac.cn
Cite this article:

LI Bo, LÜ Gong Xuan. Highly Active and Stable Catalyst for Visible Light Hydrogen Production Based on Oxidative Quenching of Eosin Y. Acta Phys. Chim. Sin., 2013, 29(08): 1778-1784.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201305302     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I08/1778

(1) Zhou, P.; Lu, G. X.; Ma, J. T. J. Mol. Catal. (China) 2011, 25 (4), 328. [周鹏, 吕功煊, 马建泰. 分子催化, 2011, 25 (4),328.]
(2) Zhou, P.; Zhao, C. J.; Dong,W. P.; Lu, G. X. J. Mol. Catal. (China) 2012, 26 (3), 265. [周鹏, 赵成坚, 董文平, 吕功煊.分子催化, 2012, 26 (3), 265.]
(3) Wu, Y. Q.; Lu, G. X.; Li, S. B. J. Mol. Catal. (China) 2004, 18 (2), 125. [吴玉琪, 吕功煊, 李树本. 分子催化, 2004, 18 (2),125.]
(4) Elvington, M.; Brown, J.; Arachchige, S. M.; Brewer, K. J.J. Am. Chem. Soc. 2007, 129 (35), 10644. doi: 10.1021/ja073123t
(5) Li, Q.; Guo, B.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.;Gong, J. R. J. Am. Chem. Soc. 2011, 133 (28), 10878.doi: 10.1021/ja2025454
(6) Wu, Y. Q.; Lu, G. X. J. Mol. Catal. (China) 2001, 15 (6), 467.[吴玉琪, 吕功煊. 分子催化, 2001, 15 (6), 467.]
(7) Silva, L. A.; Ryu, S. Y.; Choi, J.; Choi,W. Y.; Hoffmann, M. R.J. Phys. Chem. C 2008, 112 (32), 12069. doi: 10.1021/jp8037279
(8) Teets, T. S.; Nocera, D. G. Chem. Commun. 2011, 47 (33), 9268.doi: 10.1039/c1cc12390d
(9) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2008, 8 (1), 76.
(10) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y.; Li, C. J. Catal. 2009, 266 (2), 165. doi: 10.1016/j.jcat.2009.06.024
(11) Yu, J.; Qi, L.; Jaroniec, M. J. Phys. Chem. C 2010, 114 (30),13118. doi: 10.1021/jp104488b
(12) Zheng, X. H.; Zhang, B.; Li, Q. L.; Jin, Z. S. J. Mol. Catal. (China) 1991, 5 (4), 340. [郑新华, 张兵, 李庆霖, 金振声.分子催化, 1991, 5 (4), 340.]
(13) Min, S. X.; Lü, G. X. Acta Phys. -Chim. Sin. 2011, 27 (9), 2178.[敏世雄, 吕功煊. 物理化学学报, 2011, 27 (9), 2178.]doi: 10.3866/PKU.WHXB20110904
(14) Chen, K. S.; Liu,W. H.;Wang, Y. H.; Lai, C. H.; Chou, P. T.;Lee, G. H.; Chen, K.; Chen, H. Y.; Chi, Y.; Tung, F. C. Adv. Funct. Mater. 2007, 17 (15), 2964.
(15) Kubo,W.; Murakoshi, K.; Kitamura, T.; Yoshida, S.; Haruki,M.; Hanabusa, K.; Shirai, H.;Wada, Y.; Yanagida, S. J. Phys. Chem. B 2001, 105 (51), 12809. doi: 10.1021/jp012026y
(16) Li, Y. X.; Xie, C. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. J. Mol. Catal. A: Chem. 2008, 282 (1), 117.
(17) Li, Y.; Zhang, J. Laser & Photonics Rev. 2010, 4 (4), 517.
(18) Hashimoto, K.; Kawai, T.; Sakata, T. Chem. Lett. 1983, 12 (5),709.
(19) Misawa, H.; Sakuragi, H.; Usui, Y.; Tokumaru, K. Chem. Lett.1983, 7, 1021.
(20) Li, Y. X.; Guo, M. M.; Peng, S. Q.; Lu, G. X.; Li, S. B. Int. J. Hydrog. Energy 2009, 34 (14), 5629. doi: 10.1016/j.ijhydene.2009.05.100
(21) Abe, R.; Hara, K.; Sayama, K.; Domen, K.; Arakawa, H.J. Photochem. Photobiol. A: Chem. 2000, 137 (1), 63.doi: 10.1016/S1010-6030(00)00351-8
(22) Shimidzu, T.; Iyoda, T.; Koide, Y. J. Am. Chem. Soc. 1985, 107 (1), 35. doi: 10.1021/ja00287a007
(23) Kalyanasundaram, K.; Kiwi, J.; Grätzel, M. Helv. Chim. Acta1978, 61, 2720.
(24) Islam, S. D. M.; Konishi, T.; Fujitsuka, M.; Ito, O.; Nakamura,Y.; Usui, Y. Photochem. Photobiol. 2000, 71 (6), 675.doi: 10.1562/0031-8655(2000)071<0675:PROMVU>2.0.CO;2
(25) Keller, V.; Bernhardt, P.; Garin, F. J. Catal. 2003, 215 (1), 129.doi: 10.1016/S0021-9517(03)00002-2
(26) Zhang,W.; Hong, J.; Zheng, J.; Huang, Z. Y.; Zhou, J. R.; Xu,R. J. Am. Chem. Soc. 2011, 133 (51), 20680. doi: 10.1021/ja208555h
(27) Zheng, Z. K.; Huang, B. B.; Qin, X. Y.; Zhang, X. Y.; Dai, Y.;Whangbo, M. H. J. Mater. Chem. 2011, 21 (25), 9079.doi: 10.1039/c1jm10983a
(28) Pelet, S.; Grätzel, M.; Moser, J. E. J. Phys. Chem. B 2003, 107,3215.
(29) Dürr, H.; Boβmann, S.; Beuerlein, A. J. Photochem. Photobiol. A: Chem. 1993, 73, 233. doi: 10.1016/1010-6030(93)90010-I

[1] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[2] DING Xiaoqin, DING Junjie, LI Dayu, PAN Li, PEI Chengxin. Toxicity Prediction of Organoph Osphorus Chemical Reactivity Compounds Based on Conceptual DFT[J]. Acta Phys. Chim. Sin., 2018, 34(3): 314-322.
[3] GHARA Manas, CHATTARAJ Pratim K. Bonding and Reactivity in RB-AsR Systems (R=H, F, OH, CH3, CMe3, CF3, SiF3, BO):Substituent Effects[J]. Acta Phys. Chim. Sin., 2018, 34(2): 201-207.
[4] YAN Hui-Jun, LI Biao, JIANG Ning, XIA Ding-Guo. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1781-1788.
[5] YU Jing-Hua, LI Wen-Wen, ZHU Hong. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1838-1845.
[6] WANG Xin-Lei, MA Kui, GUO Li-Hong, DING Tong, CHENG Qing-Peng, TIAN Ye, LI Xin-Gang. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1699-1708.
[7] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[8] LIU Jing-Wei, YANG Na-Ting, ZHU Yan. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1453-1461.
[9] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[10] GU Jin-Yu, QI Peng-Wei, PENG Yang. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1379-1389.
[11] GOLMOHAMMADI Hassan, DASHTBOZORGI Zahra, KHOOSHECHIN Sajad. Prediction of Blood-to-Brain Barrier Partitioning of Drugs and Organic Compounds Using a QSPR Approach[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1160-1170.
[12] BAI Guang-Yue, LIU Jun-Ling, WANG Jiu-Xia, WANG Yu-Jie, LI Yan-Na, ZHAO Yang, YAO Mei-Huan. Enzymatic Superactivity and Conformational Change of α-CT Induced by Cationic Gemini Surfactant[J]. Acta Phys. Chim. Sin., 2017, 33(5): 976-983.
[13] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(3): 486-499.
[14] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[15] YUAN Hong, ZHANG Jing, WEI Xue-Hong, FANG Hui-Min, YUAN Shi-Fang, WU Li-Xin. Chiral Luminescent Liquid Crystal Material Based on Europium-Substituted Polyoxometalate[J]. Acta Phys. Chim. Sin., 2017, 33(2): 407-412.