Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (08): 1691-1697    DOI: 10.3866/PKU.WHXB201306031
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation and Electrochemical Capacitance Properties of Graphene Oxide/Polypyrrole Intercalation Composite
SHI Qin, MEN Chun-Yan, LI Juan
College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, P. R. China
Download:   PDF(987KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene oxide/polypyrrole (GO/PPy) intercalation composite was successfully prepared via in-situ chemical oxidative polymerization of pyrrole monomers by using methyl orange (MO) as a template agent. The morphology and microstructure of the composite were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In addition, the electrochemical properties of the composite material were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy techniques in two different aqueous electrolytes (1 mol·L-1 Na2SO4 and 1 mol·L-1 H2SO4). The results indicated that the GO/PPy intercalation composite displayed considerable specific capacitance in both neutral and acid electrolytes, which is attributed to taking full advantage of the superior properties and synergy of graphene oxide and polypyrrole. The GO/PPy intercalation composite exhibited the specific capacitance of 449.1 and 619.0 F·g-1 in the Na2SO4 and H2SO4 electrolytes, respectively, at a current density of 0.5 A·g-1. This is significantly higher than the corresponding specific capacitance of pure PPy. After 800 cycling test, the specific capacitance of the composite remained about 92% and 62% of the initial capacitance in the two different electrolytes, respectively. A higher initial capacitance was obtained in the acidic electrolyte, but the composite showed better electrochemical cyclic stability in the neutral electrolyte.



Key wordsGraphene oxide      Polypyrrole      Intercalation composite      Electrode material      Electrochemical capacitance property     
Received: 08 March 2013      Published: 03 June 2013
MSC2000:  O646  
Fund:  

The project was supported by the Doctoral Scientific Research Starting Foundation of Xinjiang University, China (BS110112), Urumqi Science and Technology Project, China (H101133001), and National Natural Science Foundation of China (21262035).

Corresponding Authors: LI Juan     E-mail: ljpanpan@163.com
Cite this article:

SHI Qin, MEN Chun-Yan, LI Juan. Preparation and Electrochemical Capacitance Properties of Graphene Oxide/Polypyrrole Intercalation Composite. Acta Phys. Chim. Sin., 2013, 29(08): 1691-1697.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201306031     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I08/1691

(1) Snook, G. A.; Kao, P.; Best, A. S. J. Power Sources 2011, 196,1. doi: 10.1016/j.jpowsour.2010.06.084
(2) Wang, G. P.; Zhang, L.; Zhang, J. J. Chem. Soc. Rev. 2012, 41,797. doi: 10.1039/c1cs15060j
(3) Wang, J. P.; Xu, Y. L.; Zhu, J. B.; Ren, P. G. J. Power Sources2012, 208, 138. doi: 10.1016/j.jpowsour.2012.02.018
(4) Wang, J. P.; Xu, Y. L.;Wang, J.; Du, X. F. Synthetic Metals2011, 161, 1141. doi: 10.1016/j.synthmet.2011.01.011
(5) Zhang, D. C.; Zhang, X.; Chen, Y.; Yu, P.;Wang, C. H.; Ma, Y.W. J. Power Sources 2011, 196, 5990. doi: 10.1016/j.jpowsour.2011.02.090
(6) Zhu, J. B.; Xu, Y. L.;Wang, J.;Wang, J. P. Acta Phys. -Chim. Sin. 2012, 28, 373. [朱剑波, 徐友龙, 王杰, 王景平. 物理化学学报, 2012, 28, 373.] doi: 10.3866/PKU.WHXB201112021
(7) Sahoo, S.; Nayak, G. C.; Das, C. K. Macromol. Symp. 2012,315, 177. doi: 10.1002/masy.v315.1
(8) Li, L. Y.; Xia, K. Q.; Li, L.; Shang, S. M.; Guo, Q. Z.; Yan, G. P.J. Nanopart. Res. 2012, 14, 908. doi: 10.1007/s11051-012-0908-3
(9) Xu, J. J.;Wang, K.; Zu, S. Z.; Han, B. H.;Wei, Z. X. ACS Nano2010, 4, 5019. doi: 10.1021/nn1006539
(10) Xu, C. H.; Sun, J.; Gao, L. J. Mater. Chem. 2011, 21, 11253.doi: 10.1039/c1jm11275a
(11) Ding, B.; Lu, X. J.; Yuan, C. Z.; Yang, S. D.; Han, Y. Q.; Zhang,X. G.; Che, Q. Electrochimica Acta 2012, 62, 132. doi: 10.1016/j.electacta.2011.12.011
(12) Zhang, H. Y.; Hu, Z. A.; Zhang, F. H.; Liang, P. J.; Zhang, Y. J.;Yang, Y. Y.; Zhang, Z. Y.;Wu, H. Y. Chinese Journal of Applied Chemisty 2012, 29, 674. [张海英, 胡中爱, 张富海, 梁鹏举,张亚军, 杨玉英, 张子瑜, 吴红英. 应用化学, 2012, 29, 674.]
(13) Zhu, C. Z.; Zhai, J. F.;Wen, D.; Dong, S. J. J. Mater. Chem.2012, 22, 6300. doi: 10.1039/c2jm16699b
(14) Chang, H. H.; Chang, C. K.; Tsai, Y. C.; Liao, C. S. Carbon2012, 50, 2331. doi: 10.1016/j.carbon.2012.01.056
(15) Yang, X. M.; Zhu, Z. X.; Dai, T. Y.; Lu, Y. Macromol. Rapid Commun. 2005, 26, 1736.
(16) Tang, L. H.;Wang, Y.; Li, Y. M.; Feng, H. B.; Lu, J.; Li, J. H.Adv. Funct. Mater. 2009, 19, 2782. doi: 10.1002/adfm.v19:17
(17) Feng, X. M.; Li, R. M.; Yan, Z. Z.; Liu, X. F.; Chen, R. F.; Ma,Y.W.; Li, X. A.; Fan, Q. L.; Huang,W. IEEE Transaction on Nanotechnology 2012, 11, 1080. doi: 10.1109/TNANO.2012.2200259
(18) Fan, Z. J.; Kai,W.; Yan, J.;Wei, T.; Zhi, L. J.; Feng, J.; Ren, Y.M.; Song, L. P.;Wei, F. ACS Nano 2011, 5, 191. doi: 10.1021/nn102339t
(19) Zhang, L. L.; Zhao, S. Y.; Tian, X. N.; Zhao, X. S. Langmuir2010, 26, 17624. doi: 10.1021/la103413s
(20) Gu, Z. M.; Li, C. Z.;Wang, G. C.; Zhang, L.; Li, X. H.;Wang,W. D.; Jin, S. L. Journal of Polymer Science Part B: Polymer Physics 2010, 48, 1329. doi: 10.1002/polb.v48:12
(21) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
(22) Zu, S. Z.; Han, B. H. J. Phys. Chem. C 2009, 113, 13651.
(23) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.;Obergfell, D.; Roth, S.; Girit, C.; Zettl, A. Solid State Communication 2007, 143, 101. doi: 10.1016/j.ssc.2007.02.047
(24) Tian, Y.; Yang, F. L.; Yang,W. S. Synthetic Metals 2006, 156,1052. doi: 10.1016/j.synthmet.2006.06.023
(25) Cai, Y. M.; Qin, Z. Y.; Chen, L. Progress in Natural Science: Material International 2011, 21, 460. doi: 10.1016/S1002-0071(12)60083-5
(26) Sahoo, S.; Karthikeyan, G.; Nayak, G. C.; Das, C. K. Synthetic Metals 2011, 161, 1723.
(27) Zhang, K.; Zhang, L. L.; Zhao, X. S.;Wu, J. S. Chem. Mater.2010, 22, 1392. doi: 10.1021/cm902876u
(28) Sahoo, S.; Dhibar, S.; Das, C. K. Express Polymer Letters 2012,6, 965. doi: 10.3144/expresspolymlett.2012.102

[1] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. Chim. Sin., 2017, 33(4): 787-794.
[2] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[3] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[4] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[5] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[6] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[7] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. Chim. Sin., 2017, 33(1): 198-210.
[8] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1593-1603.
[9] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[10] ZHAO Sheng-Jun, ZHANG Wei, DENG Hui-Ning, LIU Wei. Layer-by-Layer Assembly of Graphene Oxide and Polyelectrolyte Composite Membranes for Monovalent Cation Separation[J]. Acta Phys. Chim. Sin., 2016, 32(3): 723-727.
[11] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.
[12] JIAO Jin-Zhen, LI Shi-Hui, HUANG Bi-Chun. Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR[J]. Acta Phys. Chim. Sin., 2015, 31(7): 1383-1390.
[13] LIANG Yi, LU Yun, YAO Wei-Shang, ZHANG Xue-Tong. Polyimide Aerogels Crosslinked with Chemically Modified Graphene Oxide[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1179-1185.
[14] XU Jing, YANG De-Zhi, LIAO Xiao-Zhen, HE Yu-Shi, MA Zi-Feng. Electrochemical Performances of Reduced Graphene Oxide/Titanium Dioxide Composites for Sodium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(5): 913-919.
[15] LI Wen-You, HE Yun-Qiu, LI Yi-Ming. Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction[J]. Acta Phys. Chim. Sin., 2015, 31(3): 457-466.