Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (08): 1753-1761    DOI: 10.3866/PKU.WHXB201306141
ELECTROCHEMISTRY AND NEW ENERGY     
Electrochemical Behavior of Pyridine-Doped Carbon-Supported Co-Phthalocyanine (Py-CoPc/C) for Oxygen Reduction Reaction and Its Application to Fuel Cell
DAI Xian-Feng1, ZHEN Ming-Fu2, XU Pan1, SHI Jing-Jing1, MA Cheng-Yu1, QIAO Jin-Li1
1 College of Environmental Science and Engineering, Donghua University, Shanghai 201620;
2 Zhejiang Geely Automotive CO.,LTD, Shanghai 201501
Download:   PDF(674KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Pyridine-doped, carbon-supported Co-phthalocyanine (Py-CoPc/C) nanoparticle catalysts were synthesized via a combined solvent-impregnation and milling procedure, using Co-phthalocyanine (CoPc) and pyridine (Py) as the catalyst precursors. The morphologies and compositions of the catalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activities and stabilities were evaluated by linear sweep voltammetry (LSV), using a rotating disk electrode technique, in terms of their oxygen reduction reaction (ORR) activity as a function of Py doping. The results show that Py doping can significantly improve the catalytic activity of CoPc/C toward the ORR, and the optimal Py doping level is around 20% (i.e., 20%Py-20%CoPc/C), for which an onset potential of 0.20 V (vs SHE) and a half-wave potential of -0.03 V were achieved in 0.1 mol·L-1 KOH electrolyte. Compared with 40%Py/C and the 40%CoPc/C catalyst, the half-wave potential on the 20%Py-20%CoPc/C catalyst for the ORR shifted positively by 160 mV and 15 mV, respectively. The number of electrons transferred for the ORR also increased from 1.96 to 2.38, indicating an enhancement in ORR selectivity. Scanning electron microscopy-EDX and XRD analysis revealed that the N mass fraction (w) and dispersion of CoPc on carbon are improved by Py doping, which improves adsorption of O2 molecules on the catalyst surfaces. XPS analysis clearly showed pyridinic-N and graphitic-N in the Py-CoPc/C catalysts. Both are believed to be coordinated to Co ions on the catalyst surfaces, and this might be responsible for the enhanced ORR activity. An H2/O2 fuel cell using membrance electrode assembly (MEA), fabricated with a 20%Py-20%CoPc/ C cathode catalyst, generated a peak power density of 21 mW·cm-1, which is 2.4 times that of CoPc/C under the same operating conditions.



Key wordsCarbon supported Co-phthalocyanine      Pyridine-doping      Oxygen reduction reaction      Membrane electrode assembly      H2-O2 single cell     
Received: 01 April 2013      Published: 14 June 2013
MSC2000:  O643  
  O614  
Fund:  

The project was supported by the National Natural Science Foundation of China (21173039), Specialized Research Fund for the Doctoral Program of Higher Education, China (20110075110001), and Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, China (20110927) .

Corresponding Authors: QIAO Jin-Li     E-mail: qiaojl@dhu.edu.cn
Cite this article:

DAI Xian-Feng, ZHEN Ming-Fu, XU Pan, SHI Jing-Jing, MA Cheng-Yu, QIAO Jin-Li. Electrochemical Behavior of Pyridine-Doped Carbon-Supported Co-Phthalocyanine (Py-CoPc/C) for Oxygen Reduction Reaction and Its Application to Fuel Cell. Acta Phys. Chim. Sin., 2013, 29(08): 1753-1761.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201306141     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I08/1753

(1) Abdel, R. M. A.; Abdel, H. R. M.; Khalia, M.W. J. Power Sources 2004, 134, 160. doi: 10.1016/j.jpowsour.2004.02.034
(2) Tripkovic, A. V.; Popovic, K. D.; Grgur, B. N.; Blizanac, B.;Ross, P. N.; Markovic, N. M. Electrochim. Acta 2002, 47, 3707.doi: 10.1016/S0013-4686(02)00340-7
(3) Chen, R. R.; Li, H.; Chu, D.;Wang, G. F. J. Phys. Chem. C2009, 113, 20689. doi: 10.1021/jp906408y
(4) Lefèvre, M.; Dodelet, J. P. Electrochim. Acta 2003, 48, 2749.
(5) Baker, R.;Wilkinson, D. P.; Zhang, J. Electrochim. Acta 2008,53, 6906. doi: 10.1016/j.electacta.2008.01.055
(6) Li, Z. P.; Liu, B. H. J. Appl. Electrochem. 2012, 40, 475
(7) Yu, E. H.; Cheng, S.; Logan, B. F.; Scott, K. J. J. Appl. Electrochem. 2009, 39, 705. doi: 10.1007/s10800-008-9712-2
(8) Cote, R.; Lalande, G. T.; Bailey, L. D.; Guay, D.; Dodelet, J. P.J. Electrochem. Soc. 1998, 145, 2411. doi: 10.1149/1.1838651
(9) Lu, Y.; Reddy, R. G. Int. J. Hydrog. Energy 2008, 33, 3930. doi: 10.1016/j.ijhydene.2007.12.031
(10) Bambagioni, V.; Bianchini, C.; Filippi, J.; Lavacchi, A.;Oberhauser,W.; Marchionni, A. J. Power Sources 2011, 196,2519. doi: 10.1016/j.jpowsour.2010.11.030
(11) Chung, H. T.; Johnston, C. M.; Zelenay, P. Electrochemical Society Trans. 2009, 25, 485
(12) Faubert, G.; Cote, R.; Dodelet, J. P.; Lefevre, M.; Bertrand, P.Electrochim. Acta 1999, 44, 2589.
(13) Cote, R.; Lalande, G.; Faubert, G.; Guay, D.; Dodelet, J. P.;Denes, G. J. New Mater. Electrochem. Syst. 1988, 1, 7.
(14) Gupta, S.; Tryk, D.; Zecevic, S. K.; Aldred,W.; Guo, D.;Savinell, R. J. Appl. Electrochem. 1998, 28, 673. doi: 10.1023/A:1003288609411
(15) Bhugun, I.; Fred, C. Anson. J. Electroanal. Chem. 1997, 430,155.
(16) Gouerec, P.; Savy, M. Electrochim. Acta 1999, 44, 2653.
(17) Seeliger,W.; Hamnett, A. Electrochim. Acta 1992, 37, 763. doi: 10.1016/0013-4686(92)80083-X
(18) Tian, J. H.;Wang, F. B.; Shan, Z. Q.;Wang, R. J.; Zhang, J. Y.J. Appl. Electrochem. 2004, 34, 461. doi: 10.1023/B:JACH.0000021860.94340.02
(19) Cheng, H.; Yan,W.; Scott, K. Fuel Cells 2007, 7, 16.
(20) Nallathamibi, V.; Lee J.W.; Kumaraguru, S. P.;Wu, G.; Popov,B. N. J. Power Sources 2008, 183, 34. doi: 10.1016/j.jpowsour.2008.05.020
(21) Ozaki, J.; Kimura, N.; Anahara, T.; Oya, A. Carbon 2007, 45,1847. doi: 10.1016/j.carbon.2007.04.031
(22) Iwazaki, T.; Obinata, R.; Sugimoto,W.; Takasu, Y. Electrochem. Commun. 2009, 11, 376. doi: 10.1016/j.elecom.2008.11.045
(23) Iwazaki, T.; Yang, H.; Obinata, R.; Sugimoto,W.; Takasu, Y.J. Power Sources 2010, 195, 5840. doi: 10.1016/j.jpowsour.2009.12.135
(24) Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009,323, 760. doi: 10.1126/science.1168049
(25) Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Science 2009,324, 71. doi: 10.1126/science.1170051
(26) Collman, J. P.; Chien, A. S.; Eberspacher, T. A.; Zhong, M.;Brauman, J. I. Inorg. Chem. 2000, 39, 4625. doi: 10.1021/ic000071z
(27) Qiao, J. L.; Xu, L.; Ding, L.; Zhang, L.; Baker, R.; Dai, X. F.;Zhang, J. J. Appl. Catal. B 2012, 125, 197. doi: 10.1016/j.apcatb.2012.05.050
(28) Velázquez-Palenzuela, A.; Zhang, L.;Wang, L. C.; Cabo, P. L.;Brillas, E.; Tsaya, K.; Zhang, J. J. Electrochim. Acta 2011, 56,4744. doi: 10.1016/j.electacta.2011.03.059
(29) Ding, L.; Qiao, J. L.; Dai, X. F.; Zhang, J. J.; Tian, B. L. Int. J. Hydrog. Energy 2012, 37, 14103. doi: 10.1016/j.ijhydene.2012.07.046
(30) Xu, Z.W.; Li, H. J.; Cao, G. X.; Zhang, Q. L.; Li, K. Z.; Zhao,X. N. J. Mol. Catal. A -Chem. 2011, 335, 89. doi: 10.1016/j.molcata.2010.11.018
(31) Iamamoto, Y.; Assis, M. D.; Ciuffi, K. J.; Sacco, H. C.;Iwamoto, L.; Melo, A. J. B.; Nascimento, O. R.; Prado, M. C. J. Mol. Catal. A -Chem. 1996, 109, 189. doi: 10.1016/1381-1169(96)00030-1
(32) Baranton, S.; Coutanceau, C.; Roux, C.; Hahn, F.; Leger, J. M.J. Electroanal. Chem. 2005, 577, 223.
(33) Lima, F. H. B.; Giz, M. J.; Ticianelli, E. A. J. Braz. Chem. Soc.2005, 16, 328.
(34) Giacomini, M. T.; Ticianelli, E. A.; McBreen, J.;Balasubramanianb, M. J. Electrochem. Soc. 2001, 148, A323.
(35) Markovic, N. M.; Schmidt, T. J.; Stamenkovic, V.; Ross, P. N.Fuel Cells 2001, 1, 105.
(36) Bard, A. J.; Faulkner, L. Electrochemical Methods, Wiley &Sons: New York, 2001, p 331.
(37) Lu, Y. H.; Ramana, G. R. Electrochim. Acta 2007, 52, 2562.
(38) Li, X.; Liu, G.; Popov, B. N. J. Power Sources 2010, 195, 6373.
(39) Lee, K.; Zhang, L.; Lui, H. Electrochim. Acta 2009, 54, 4704.
(40) Velázquez-Palenzuela, A.; Zhang, L.;Wang, L. J. Phys. Chem. C 2011, 115, 12929.
(41) Liu, G.; Li, X.; Ganesan, P. Electrochim. Acta 2010, 55, 2853.

[1] SHEN Hai-Bo, JIANG Hao, LIU Yi-Si, HAO Jia-Yu, LI Wen-Zhang, LI Jie. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1811-1821.
[2] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[3] ZHOU Yang, CHENG Qing-Qing, HUANG Qing-Hong, ZOU Zhi-Qing, YAN Liu-Ming, YANG Hui. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1429-1435.
[4] ZHAI Xiao, DING Yi. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1366-1378.
[5] WANG Jun, WEI Zi-Dong. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(5): 886-902.
[6] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. Chim. Sin., 2017, 33(2): 283-294.
[7] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. Chim. Sin., 2017, 33(1): 149-164.
[8] ZHU Hong, LUO Ming-Chuan, CAI Ye-Zheng, SUN Zhao-Nan. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. Chim. Sin., 2016, 32(10): 2462-2474.
[9] WANG Jun, LI Li, WEI Zi-Dong. Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene[J]. Acta Phys. Chim. Sin., 2016, 32(1): 321-328.
[10] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1727-1732.
[11] HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1715-1726.
[12] CHEN Feng-Ying, XIAO Li, YANG Cui-Xia, ZHUANG Lin. Preparation and Electrocatalytic Properties of Perovskite Type Oxides CaVO3 for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2310-2315.
[13] YANG Mei-Ni, LIN Rui, FAN Ren-Jie, ZHAO Tian-Tian, ZENG Hao. Preparation and Application of Pt-Ni Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2131-2138.
[14] PENG San, GUO Hui-Lin, KANG Xiao-Feng. Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1778-1786.
[15] FAN Ren-Jie, LIN Rui, HUANG Zhen, ZHAO Tian-Tian, MA Jian-Xin. Preparation and Characterization of Pt Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Phys. Chim. Sin., 2014, 30(7): 1259-1266.