Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (09): 1865-1876    DOI: 10.3866/PKU.WHXB201306173
Chemical Synthesis and Applications of Graphitic Carbon Nitride
ZHANG Jin-Shui, WANG Bo, WANG Xin-Chen
Research Institute of Photocatalysis, College of Chemistry and Chemial Engineering, Fuzhou University, Fuzhou 350002, P. R. China
Download:   PDF(2497KB) Export: BibTeX | EndNote (RIS)      


Recently, polymeric semiconductor graphitic carbon nitride (g-C3N4) has been widely used in fields related to energy and material science, because of its unique electronic structure and excellent chemical inertness. For example, it can function as a metal-free catalyst or as a catalyst support for organic synthesis, photocatalytic water splitting, oxygen reduction reactions, and loading of Au, Pd, Ag, and Pt nanoparticles. In addition, it can also serve as a porous covalent organic framework for the absorption of H2 and CO2 gases, or as a hard template for the generation of metal (oxy)nitrides. In this review, some recent advances in g-C3N4 synthesis and applications are presented. The prospects for the development of g-C3N4 in energy-and environment-related fields are also discussed.

Key wordsGraphitic carbon nitride      Polymeric semiconductor      Material preparation      Application research     
Received: 15 May 2013      Published: 17 June 2013
MSC2000:  O643  

The project was supported by the National Key Basic Research Program of China (973) (2013CB632405) and National Natural Science Foundation of China (21033003, 21173043, J1103303).

Corresponding Authors: WANG Xin-Chen     E-mail:
Cite this article:

ZHANG Jin-Shui, WANG Bo, WANG Xin-Chen. Chemical Synthesis and Applications of Graphitic Carbon Nitride. Acta Phys. -Chim. Sin., 2013, 29(09): 1865-1876.

URL:     OR

(1) Kroke, E.; Schwar, M. Coord. Chem. Rev. 2004, 248, 493. doi: 10.1016/j.ccr.2004.02.001
(2) Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller,J.; Schlögl, R.; Carlsson, J. J. Mater. Chem. 2008, 18, 4893. doi: 10.1039/b800274f
(3) Liebig, J. Ann. Pharm. 1834, 10, 10.
(4) Franklin, E. J. Am. Chem. Soc. 1922, 44, 486. doi: 10.1021/ja01424a007
(5) Liu, A.; Cohen, M. Science 1989, 245, 841. doi: 10.1126/science.245.4920.841
(6) Teter, D.; Hemley, R. Science 1996, 271, 53. doi: 10.1126/science.271.5245.53
(7) Molina, B.; Sansores, L. Modern Phys. Lett. B 1999, 13,193. doi: 10.1142/S0217984999000269
(8) Kroke, E.; Sehwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.;Norman, A. New J. Chem. 2002, 26, 508. doi: 10.1039/b111062b
(9) Chen, T. B.; Li, Z. Q. Matrer. Sci. Eng. 1998, 16, 6. [陈天兵,李宗全. 材料科学与工程, 1998, 16, 6.]
(10) Ma, Z. New Carbon Mater. 2006, 21, 276. [马志斌.新型炭材料, 2006, 21, 276.]
(11) Wu, X. C.; Liu, G. H.; Chen, G. H. J. Gansu Sci. 1999, 11, 9.[吴现成, 刘国汉, 陈光华.甘肃科学学报, 1999, 11, 9.]
(12) Zhao, H.; Chen, X.; Jia, C.; Zhou, T.; Qu, X.; Jian, J.; Xu, Y.;Zhou, T. Mater. Sci. Eng. B 2005, 122, 90. doi: 10.1016/j.mseb.2005.05.007
(13) Meng, Y. L. Study on the Preparation and Photocatalysis ofGraphitic Carbon Nitrides. Master Dissertation, DalianUniversity of Technology, Dalian, 2010. [梦雅丽. g-C3N4的合成及其光催化研究[D]. 大连: 大连理工大学, 2011.]
(14) Khabashesku, V.; Zimmerman, J.; Margrave, J. Chem. Mater.2000, 12, 3264. doi: 10.1021/cm000328r
(15) Zhang, Z.; Leinenweber, K.; Bauer, M.; Garvie, L.; McMillan,P.; Wolf, G. J. Am. Chem. Soc. 2001, 123, 7788. doi: 10.1021/ja0103849
(16) Gu, Y.; Chen, L.; Shi, L.; Ma, J.;Yang, Z.; Qian, Y. Carbon2003, 41, 2653. doi: 10.1016/S0008-6223(03)00287-2
(17) Guo, Q.; Yang, Q.; Yi, C.; Zhu, L.; Xie, Y. Carbon 2005, 43,1386. doi: 10.1016/j.carbon.2005.01.005
(18) Zimmerman, J.; Williams, R.; Khabashesku, V.; Margrave, J.Nano Lett. 2001, 1, 731. doi: 10.1021/nl015626h
(19) Lu, X.; Gai, L.; Cui, D.; Wang, Q.; Zhao, X.; Tao, X. Mater. Lett. 2007, 61, 4255. doi: 10.1016/j.matlet.2007.01.076
(20) Li, Y.; Zhang, J.; Wang, Q.; Jin, Y.; Huang, D.; Cui, Q.; Zou, G.J. Phys. Chem. B 2010, 114, 9429. doi: 10.1021/jp103729c
(21) Komatsu, T. J. Mater. Chem. 2001, 11, 802. doi: 10.1039/b007165j
(22) Tragl, S.; Gibson, K.; Glaser, J.; Duppel, V.; Simon, A.; Meyer,H. Solid State Commun. 2007, 14, 529.
(23) Montigaud, H.; Tanguy, B.; Demazeau, G.; Alves, I.; Courjault,S. J. Mater. Sci. 2000, 35, 2547. doi: 10.1023/A:1004798509417
(24) Lv, Q.; Cao, C.; Li, C.; Zhang, J.; Zhu, H.; Kong, X.; Duan, X.J. Mater. Chem. 2003, 13, 1241.
(25) Luv, Q.; Cao, C.; Zhang, J.; Li, C.; Zhu, H. J. Appl. Phys. A2004, 79, 633. doi: 10.1007/s00339-002-2058-4
(26) Fu, Q.; Cao, C.; Zhu, H. Chem. Phys. Lett. 1999, 314, 223. doi: 10.1016/S0009-2614(99)01169-0
(27) Montigaud, H.; Tanguy, B.; Demazeau, G.; Alves, I.; Birot, M.;Dungues, J. Diam. Relat. Muter. 1999, 8, 1707.
(28) Andreyev, A.; Akaishi, M.; Golberg, D. Chem. Phys. Lett. 2003,372, 635. doi: 10.1016/S0009-2614(03)00471-8
(29) Bai, Y.; Lv, B.; Liu, Z.; Li, L.; Cui, D.; Xu, X; Wang, Q. J. Cryst. Growth 2003, 247, 505. doi: 10.1016/S0022-0248(02)01981-4
(30) Guo, Q.; Xie, Y.; Wang, X.; Lv, S.; Hou, T.; Liu, X. Chem. Phys. Lett. 2003, 380, 84. doi: 10.1016/j.cplett.2003.09.009
(31) Guo, Q.; Xie, Y.; Wang, X.; Zhang, S.; Hou, T.; Lv, S. Chem. Commun. 2004, 26.
(32) Guo, Q.; Yang, Q.; Zhu, L.; Yi, C.; Zhang, S.; Xie, Y. Solid State Commun. 2004, 132, 369. doi: 10.1016/j.ssc.2004.08.014
(33) Cao, C.; Huang, F.; Cao, C.; Li, J.; Zhu, H. Chem. Mater. 2004,16, 5213. doi: 10.1021/cm0493039
(34) Li, J.; Cao, C.; Hao, J.; Qiu, H.; Xu, Y.; Zhu, H. Diam. Relat. Mater. 2006, 15, 1593. doi: 10.1016/j.diamond.2006.01.013
(35) Li, J.; Cao, C.; Zhu, H. Nanotechnology 2007, 18, 115605. doi: 10.1088/0957-4484/18/11/115605
(36) Cui, Y.; Ding, Z.; Fu, X.; Wang, X. Angew. Chem. Int. Edit.2012, 51, 11814. doi: 10.1002/anie.201206534
(37) Bai, X.; Li, J.; Cao, C.; Hussain, S. Mater. Lett. 2011, 65,1101. doi: 10.1016/j.matlet.2011.01.008
(38) Li, C.; Cao, C.; Zhu, H. Chin. Sci. Bull. 2003, 48, 1737. doi: 10.1360/03wb0011
(39) Li, C.; Cao, C. B.; Zhu, H. S.; Lv, Q.; Zhang, J. T.; Xiang, X.J. Synt. Cryst. 2003, 32, 252. [李超, 曹传宝,朱鹤孙,吕强, 张加涛, 项顼. 人工晶体学报, 2003, 32, 252.]
(40) Li, C.; Cao, C.; Zhu, H.; Lv, Q; Zhang, J. Wang, X. Mater. Sci. Eng. B 2004, 106, 308. doi: 10.1016/j.mseb.2003.10.006
(41) Li, C.; Cao, C.; Zhu, H. Mater. Lett. 2004, 58, 1903. doi: 10.1016/j.matlet.2003.11.024
(42) Bai, X.; Li, J.; Cao, C. Appl. Surf. Sci. 2010, 256, 2327. doi: 10.1016/j.apsusc.2009.10.061
(43) Wang, Y.; Wang, X.; Antonietti, M. Angew. Chem. Int. Edit.2012, 51, 68. doi: 10.1002/anie.201101182
(44) Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Energy Environ. Sci. 2012, 5, 6717. doi: 10.1039/c2ee03479d
(45) Lyth, S.; Nabae, Y.; Moriya, S.; Kuroki, S.; Kakimoto, M.;Ozaki, J.; Miyata, S. J. Phys. Chem. C 2009, 113, 20148. doi: 10.1021/jp907928j
(46) Li, Q.; Yang, J.; Feng, D.; Wu, Z.; Wu, Q.; Park, S.; Ha, C.;Zhao, D. Nano Res. 2010, 3, 632. doi: 10.1007/s12274-010-0023-7
(47) Jin, X.; Balasubramanian, V.; Selvan, S.; Sawant, D.; Chari, M.;Lu, G.; Vinu, A. Angew. Chem. Int. Edit. 2009, 48, 7884. doi: 10.1002/anie.v48:42
(48) Groenewolt, M.; Antonietti, M. Adv. Mater. 2005, 17, 1789.
(49) Wang, Y.; Wang, X.; Antonietti, M.; Zhang, Y. ChemSusChem2010, 3, 435. doi: 10.1002/cssc.v3:4
(50) Yang, H. Chem. Commun. 2012, 48, 3430. doi: 10.1039/c2cc00001f
(51) Vinu, A. Adv. Funct. Mater. 2008, 18, 816.
(52) Talapaneni, S.; Anandan, S.; Mane, G.; Anand, C.; Dhawale, D.;Varghese, S.; Mano, A.; Mori, T.; Vinu, A. J. Mater. Chem.2012, 22, 9831. doi: 10.1039/c2jm30229b
(53) Park, S.; Chu, S.; Xue, C.; Zhao, D.; Ha, C. J. Mater. Chem.2011, 21, 10801. doi: 10.1039/c1jm10849b
(54) Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45, 4467.
(55) Jun, Y.; Hong, W.; Antonietti, M.; Thomas, A. Adv. Mater.2009, 21, 4270. doi: 10.1002/adma.v21:42
(56) Zhang, J.; Guo, F.; Wang, X. Adv. Funct. Mater. 2013, 23,3008. doi: 10.1002/adfm.201203287.
(57) Fischer, A.; Antonietti, M.; Thomas, A. Adv. Mater. 2007, 19,264.
(58) Fischer, A.; Muller, J.; Antonietti, M.; Thomas, A. ACS Nano,2008, 2, 2489. doi: 10.1021/nn800503a
(59) Yuliati, L.; Yang, J.; Wang, X.; Maeda, K.; Takata, T.;Antonietti, M.; Domen, K. J. Mater. Chem. 2010, 20,4295. doi: 10.1039/c0jm00341g
(60) Kim, M.; Hwang, S.; Yu, J. J. Mater. Chem. 2007, 17,1656. doi: 10.1039/b702213a
(61) Datta, K.; Reddy, B.; Ariga, K.; Vinu, A. Angew. Chem. Int. Edit. 2010, 49, 5961.
(62) Singh, J.; Overbury, S.; Dudney, N.; Li, M.; Veith, G. ACS Catal. 2012, 2, 1138. doi: 10.1021/cs3001094
(63) Zhu, J.; Carabineiro, S.; Shan, D.; Faria, J.; Zhu, Y.;Figueiredo, J. J. Catal. 2010, 274, 207. doi: 10.1016/j.jcat.2010.06.018
(64) Wang, Y.; Yao, J.; Li, H.; Su, D.; Antonietti, M. J. Am. Chem. Soc. 2011, 133, 2362. doi: 10.1021/ja109856y
(65) Li, Y.; Gong, Y.; Xu, X.; Zhang, P.; Li, H.; Wang, Y. Catal. Commun. 2012, 28, 9. doi: 10.1016/j.catcom.2012.08.005
(66) Gong, Y.; Zhang, P.; Xu, X.; Li, Y.; Li, H.; Wang, Y. J. Catal.2013, 297, 272. doi: 10.1016/j.jcat.2012.10.018
(67) Krishna, K.; Kumar, B.; Eswaramoorthy, M. Chem. Phys. Lett.2011, 511, 87. doi: 10.1016/j.cplett.2011.06.006
(68) Haque, E.; Jun, J.; Talapaneni, S.; Vinu, A.; Jhunq, S. J. Mater. Chem. 2010, 20, 10801. doi: 10.1039/c0jm02974b
(69) Lee, E.; Jun, Y.; Hong, W.; Thomas, A.; Jin, M. Angew. Chem. Int. Edit. 2010, 49, 9706. doi: 10.1002/anie.201004975
(70) Lee, E.; Lee, S.; Heo, N.; Stucky, G.; Jun, Y.; Hong, W. Chem. Commun. 2012, 48, 3942. doi: 10.1039/c2cc17909a
(71) Cheng, C.; Huang, Y.; Tian, X.; Zheng, B.; Li, Y.; Yuan, H.;Xiao, D.; Xie, S.; Choi, M. Anal. Chem. 2012, 84, 4754. doi: 10.1021/ac300205w
(72) Mane, G.; Dhawale, D.; Anand, C.; Ariga, K.; Ji, Q.; Wahab,M.; Mori, T.; Vinu, A. J. Mater. Chem. A 2013, 1, 2913. doi: 10.1039/c2ta01215d
(73) Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 18. doi: 10.1021/ja308249k
(74) Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y.; Qiao, S. Small 2012,8, 3550. doi: 10.1002/smll.v8.23
(75) Lyth, S.; Nabae, Y.; Moriya, S.; Kuroki, S.; Kakimoto, M.;Ozaki, J.; Miyata, S. J. Phys. Chem. C 2009, 113, 20148.doi: 10.1021/jp907928j
(76) Lyth, S.; Nabae, Y.; Islam, N.; Kuroki, S.; Kakimoto, M.;Miyata, S. J. Electrochem. Soc. 2011, 158, B194.
(77) Kwon, K.; Sa, Y.; Cheon, J.; Joo, S. Langmuir 2012, 28,991. doi: 10.1021/la204130e
(78) Yang, S.; Feng, X.; Wang, X.; Müllen, K. Angew. Chem. Int. Edit. 2011, 50, 5339. doi: 10.1002/anie.201100170
(79) Sun, Y.; Li, C.; Xu, Y.; Bai, H.; Yao, Z.; Shi, G. Chem. Commun. 2010, 46, 4740. doi: 10.1039/c001635g
(80) Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A.; Zhang,W.; Zhu, Z.; Smith, S.; Jaroniec, M.; Qiao, S. J. Am. Chem. Soc. 2011, 133, 20116. doi: 10.1021/ja209206c
(81) Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.Jaroniec, M.; Qiao, S. Angew. Chem. Int. Edit. 2012, 51,3892. doi: 10.1002/anie.201107981
(82) Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chem. Commun. 2006, 4530.
(83) Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. New J. Chem. 2007, 31, 1455. doi: 10.1039/b618555j
(84) Goettmann, F.; Thoma, A.; Antonietti, M. Angew. Chem. Int. Edit. 2007, 46, 2717.
(85) Ansari, M.; Min, B.; Mo, Y.; Park, S. Green Chem. 2011, 13,1416. doi: 10.1039/c0gc00951b
(86) Talapaneni, S.; Anandan, S.; Mane, G.; Anand, C.; Dhawale,D.; Varghese, S.; Mano, A.; Mori, T.; Vinu, A. J. Mater. Chem.2012, 22, 9831. doi: 10.1039/c2jm30229b
(87) Su, F.; Antonietti, M.; Wang, X. Catal. Sci. Technol. 2012, 2,1005. doi: 10.1039/c2cy00012a
(88) Wang, Y.; Zhang, J.; Wang, X.; Antonietti, M.; Li, H. Angew. Chem. Int. Edit. 2010, 49, 3356. doi: 10.1002/anie.201000120
(89) Li, X.; Wang, X.; Antonietti, M. ACS Catal. 2012, 2, 2082. doi: 10.1021/cs300413x
(90) Wang, Y.; Li, H.; Yao, J.; Wang, X.; Antonietti, M. Chem. Sci.2011, 2, 446. doi: 10.1039/c0sc00475h
(91) Li, X.; Chen, J.; Wang, X.; Sun, J.; Antonietti, M. J. Am. Chem. Soc. 2011, 133, 8074.
(92) Wang, X.; Maeda, K.; Thomas, A. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317
(93) Maeda, K.; Wang, X.; Nishihara, Y. J. Phys. Chem. C 2009,113, 4940.
(94) Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.;Epping, J.; Fu, X.; Antonietti, M.; Wang, X. Angew. Chem. Int. Edit. 2010, 49, 441. doi: 10.1002/anie.200903886
(95) Zhang, J.; Zhang, G.; Chen, X.; Lin, S.; Möhlmann, L.;Dolega, G.; Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X.Angew. Chem. Int. Edit. 2012, 51, 3183. doi: 10.1002/anie.v51.13
(96) Zhang, J.; Zhang, M.; Sun, R.; Wang, X. Angew. Chem. Int. Edit. 2012, 51, 10145. doi: 10.1002/anie.201205333
(97) Zhang, J.; Zhang, M.; Lin, S.; Fu, X.; Wang, X. J. Catal. 2013,doi: 10.1016/j.jcat.2013.01.008.
(98) Zhang, J.; Sun, J.; Maeda, K.; Domen, K.; Liu, P.; Antonietti,M.; Fu, X.; Wang, X. Energy Environ. Sci. 2011, 4, 675. doi: 10.1039/c0ee00418a
(99) Zhang, J.; Grzelczak, M.; Hou, Y.; Maeda, K.; Domen, K.; Fu,X.; Antonietti, M.; Wang, X. Chem. Sci. 2012, 3, 443. doi: 10.1039/c1sc00644d
(100) Zhang, J.; Zhang, M.; Zhang, G.; Wang, X. ACS Catal. 2012,2, 940. doi: 10.1021/cs300167b
(101) Zheng, H. R.; Zhang, J. S.; Wang, X. C.; Fu, X. Z. Acta Phys.- Chim. Sin. 2012, 28, 2336. [郑华荣, 张金水,王心晨, 付贤智. 物理化学学报, 2012, 28, 2336. ] doi: 10.3866/PKU.WHXB201209104
(102) Chen, X.; Shen, S.; Guo, L.; Mao, S. Chem. Rev. 2010, 110,6503. doi: 10.1021/cr1001645
(103) Wang, X.; Blechert, S.; Antonietti, M. ACS Catal. 2012, 2,1596. doi: 10.1021/cs300240x
(104) Wang, X.; Chen, X.; Thomas, A.; Fu, X.; Antonietti, M. Adv. Mater. 2009, 21, 1609. doi: 10.1002/adma.v21:16
(105) Yan, S.; Li, Z.; Zou, Z. Langmuir 2009, 25, 10397.doi: 10.1021/la900923z
(106) Chen, X.; Zhang, J.; Fu, X.; Antonietti, M.; Wang, X. J. Am. Chem. Soc. 2009, 131, 11658. doi: 10.1021/ja903923s
(107) Su, F.; Mathew, S.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert,S.; Wang, X. J. Am. Chem. Soc. 2010, 132, 16299.doi: 10.1021/ja102866p
(108) Su, F.; Mathew, S.; Möhlmann, L.; Antonietti, M.; Wang, X.;Blechert, S. Angew. Chem. Int. Edit. 2011, 50, 657.doi: 10.1002/anie.v50.3
(109) Möhlmann, L.; Baar, M.; Rieß, J.; Antonietti, M.; Wang, X.;Blechert, S. Adv. Synth. Catal. 2012, 354, 1909. doi: 10.1002/adsc.v354.10
(110) Zhang, P.; Wang, Y.; Li, H.; Antonietti, M. Green Chem. 2012,14, 1904. doi: 10.1039/c2gc35148j
(111) Zhang, P.; Wang, Y.; Yao, J. Adv. Synth. Catal. 2011, 353,1447. doi: 10.1002/adsc.201100175
(112) Kiskan, B.; Zhang, J.; Wang, X.; Antonietti, M.; Yagci, Y. ACS Macro. Lett. 2012, 1, 546. doi: 10.1021/mz300116w

[1] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[2] Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 611-619.
[3] Yue WANG,Quan JIANG,Jie-Kun SHANG,Jie XU,Yong-Xin LI. Advances in the Synthesis of Mesoporous Carbon Nitride Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1913-1928.
[4] Dong-Mei LIANG,Xia LENG,Yu-Chen MA. Quasiparticle Band Structures and Optical Properties of Graphitic Carbon Nitrides[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1967-1976.
[5] Hui-Wen ZUO,Chun-Hai LU,Yu-Rong REN,Yi LI,Yong-Fan ZHANG,Wen-Kai CHEN. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1183-1190.
[6] ZHANG Jian, WANG Yan-Juan, HU Shao-Zheng. Effect of K+ Doping on the Band Structure and Photocatalytic Performance of Graphitic Carbon Nitride Photocatalysts[J]. Acta Phys. -Chim. Sin., 2015, 31(1): 159-165.
[7] JIN Rui-Rui, YOU Ji-Guang, ZHANG Qian, LIU Dan, HU Shao-Zheng, GUI Jian-Zhou. Preparation of Fe-Doped Graphitic Carbon Nitride with Enhanced Visible-Light Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1706-1712.
[8] WANG Yu, JIANG Jun-Cong, ZHU Yue-Xiang, XIE You-Chang. Applications of Monolayer-Dispersed Organic Compounds in the Preparation of Related Materials[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2327-2335.