Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (09): 1989-1997    DOI: 10.3866/PKU.WHXB201306181
Synthesis of Na2MnPO4F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery
ZHONG Yan-Jun1,2, LI Jun-Tao2, WU Zhen-Guo1, ZHONG Ben-He1, GUO Xiao-Dong1, HUANG Ling2, SUN Shi-Gang2
1 School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China;
2 School of Energy Research, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(2451KB) Export: BibTeX | EndNote (RIS)      


Na2MnPO4F/C composites were synthesized by wet ball milling and in situ pyrolytic carbon coating. Stearic acid, citric acid, poly(ethylene glycol) 6000, and β-cyclodextrin were used as carbon sources in the synthesis process. The structures, morphologies, and electrochemical performances of the as-synthesized Na2MnPO4F/C composites were further investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area analysis, and galvanostatic chargedischarge tests. Distinct differences were observed in the morphologies and sizes of the Na2MnPO4F/C particles obtained from different carbon sources, and this significantly affected their electrochemical performances. It was found that the primary particle size of the Na2MnPO4F/C material is a key factor in the electrochemical performance. The sample synthesized using citric acid as the carbon source had a micro-nano structure, with the smallest primary particle size of 10-40 nm, and displayed the best electrochemical properties. It delivered an initial discharge capacity of 80 mAh·g-1 under a current density of 5 mA·g-1 in the voltage range of 1.5-4.8 V, and displayed good cycling performance.

Key wordsLithium ion battery      Cathode      Na2MnPO4F/C      Carbon source      Morphology     
Received: 19 March 2013      Published: 18 June 2013
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (50574063, 21021002, 21003102), Sichuan University Funds for Young Scientists, China (2011SCU11081), Research Fund for the Doctoral Program of Higher Education, the Ministry of Education, China (20120181120103).

Corresponding Authors: LI Jun-Tao, GUO Xiao-Dong     E-mail:;
Cite this article:

ZHONG Yan-Jun, LI Jun-Tao, WU Zhen-Guo, ZHONG Ben-He, GUO Xiao-Dong, HUANG Ling, SUN Shi-Gang. Synthesis of Na2MnPO4F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery. Acta Phys. -Chim. Sin., 2013, 29(09): 1989-1997.

URL:     OR

(1) Cao, Y. B.; Duan, J. G.; Jiang, F.; Hu, G. R.; Peng, Z. D.; Du, K.Acta Phys. -Chim. Sin. 2012, 28, 1183. [曹雁冰, 段建国,姜锋,胡国荣,彭忠东,杜柯.物理化学学报, 2012, 28,1183.] doi: 10.3866/PKU.WHXB2012022210
(2) Guo, X. D.; Zhong, B. H.; Liu, H.; Wu, D. Q.; Tang, Y.; Tang,H. J. Electrochem. Soc. 2009, 156, A787.
(3) Zhao, H. C.; Song, Y.; Guo, X. D.; Zhong, B. H.; Dong, J.; Liu,H. Acta Phys. -Chim. Sin. 2011, 27, 2347. [赵浩川,宋杨,郭孝东, 钟本和, 董静,刘恒. 物理化学学报, 2011, 27,2347.] doi: 10.3866/PKU.WHXB20110905
(4) Chol, D. W.; Wang, D. H.; Bae, I. T.; Xiao, J.; Nie, Z. M.; Wang,W.; Viswanathan, V. V.; Lee, Y. J.; Zhang, J. G.; Graff, G. L.;Yang, Z. G.; Liu, J. Nano Lett. 2010, 10, 2799. doi: 10.1021/nl1007085
(5) Tang, Y.; Guo, X. D.; Nie, X.; Zhong, Y. J.; Zhong, B. H.; Liu,H.; Wen, J. J. The Chinese Journal of Nonferrous Metals 2011,196, 8706. [唐艳, 郭孝东,聂翔,钟艳君, 钟本和,刘恒, 文嘉杰. 中国有色金属学报, 2011, 196, 8706.]
(6) Guo, X. D.; Zhong, B. H.; Tang, Y.; Liu, H.;Wu, D. Q.; Yang,H. L. J. Chem. Eng. Chin. Univ. 2009, 23, 701. [郭孝东,钟本和, 唐艳, 刘恒, 吴德桥, 杨海兰.高校化学工程学报,2009, 23, 701.]
(7) Tang, Y.; Zhong, B. H.; Guo, X. D.; Liu, H.; Zhong, Y. J.; Nie,X.; Tang, H. Acta Phys. -Chim. Sin. 2011, 27, 869. [唐艳,钟本和, 郭孝东, 刘恒,钟艳君,聂翔,唐红.物理化学学报, 2011, 27, 869.] doi: 10.3866/PKU.WHXB20110416
(8) Gong, Z. L.; Yang, Y. Energy Environ. Sci. 2011, 4, 3223. doi: 10.1039/c0ee00713g
(9) Khasanova, N. R.; Drozhzhin, O. A.; Storozhilova, D. A.;Delmas, C.; Antipov, E. V. Chem. Mater. 2012, 24, 4271. doi: 10.1021/cm302724a
(10) Barker, J.; Saidi, M. Y.; Swoyer, J. L. J. Electrochem. Soc. 2003,50, A1394.
(11) Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. J. Power Sources 2010, 195, 5768. doi: 10.1016/j.jpowsour.2010.03.032
(12) Makimura, Y.; Cahill, L. S.; Iriyama, Y.; Goward, G. R.; Nazar,L. F. Chem. Mater. 2008, 20, 4240. doi: 10.1021/cm702346n
(13) Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.;Nazar, L. F. Nat. Mater. 2007, 6, 749. doi: 10.1038/nmat2007
(14) Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.;Carretero-Gonzalez, J.; Rojo,T. Energy Environ. Sci. 2012, 5,5884. doi: 10.1039/c2ee02781j
(15) Nagahama, M.; Hasegawa, N.; Okada, S. J. Electrochem. Soc.2010, 157,A748.
(16) Okada, S.; Ueno, M.; Uebou, Y.; Yamaki, J. J. Power Sources2005, 146, 565. doi: 10.1016/j.jpowsour.2005.03.149
(17) Yang, Y.; Gong, Z. L.; Wu, X. B.; Zheng, J. M.; Lü, D. P. Chin. Sci. Bull. 2012, 57, 2570. [杨勇,龚正良, 吴晓彪,郑建明,吕东平.科学通报, 2012, 57, 2570.] doi: 10.1360/972011-2149
(18) Recham, N.; Chotard, J. N.; Dupont, L.; Djellab, K.; Armand,M.; Tarascon, J. M. J. Electrochem. Soc. 2009, 145, A993.
(19) Ellis, B. L.; Makahnouk, W. R. M.; Rowan-Weetaluktuk, W. N.;Ryan, D. H.; Nazar, L. F. Chem. Mater. 2010, 22, 1059. doi: 10.1021/cm902023h
(20) Kim, S. W.; Seo, D. H.; Kim, H.; Park. K. Y.; Kang, K. Phys. Chem. Chem. Phys. 2012, 14, 3299. doi: 10.1039/c2cp40082k
(21) Yakibovich, O. V.; Karimova, O. V.; Mel’nikov, O. K. Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1997, C53, 395.
(22) Wu, X. B.; Zheng, J. M.; Gong, Z. L.; Yang, Y. J. Mater. Chem.2011, 21, 18630. doi: 10.1039/c1jm13578c
(23) Slater, M. D.; Kim, D.; Lee, E. Adv. Funct. Mater. 2013, 23,947. doi: 10.1002/adfm.v23.8
(24) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Edit. 2008, 47, 2930.
(25) Wang, J. J.; Sun, X. L. Energy Environ. Sci. 2012, 5, 5163. doi: 10.1039/c1ee01263k
(26) Li, H. Q.; Zhou, H. S. Chem. Commun. 2012, 48, 1201. doi: 10.1039/c1cc14764a
(27) Zheng, J. M.; Xiao, J.; Xu, W.; Chen, X. L.; Gu, M.; Li, X. H.;Zhang, J. G. J. Power Sources 2013, 227, 211. doi: 10.1016/j.jpowsour.2012.11.038
(28) Seel, J. A.; Dahn, J. R. J. Electrochem. Soc. 2000, 147,892. doi: 10.1149/1.1393288
(29) Ishihara, T.; Koga, M.; Matsumoto, H.; Yoshio, M.Electrochem. Solid-State Lett. 2007, 10, A74.

[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[3] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[4] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[5] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 391-406.
[6] Dan DENG,Erjun ZHOU,Zhixiang WEI. Fluorination: An Effective Molecular Design Strategy for Efficient Photovoltaic Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1239-1249.
[7] Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150.
[8] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[9] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[10] . Investigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1140-1148.
[11] Shuai LIU,Lu YAO,Qin ZHANG,Lu-Lu LI,Nan-Tao HU,Liang-Ming WEI,Hao WEI. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2339-2358.
[12] Li YANG,Guo-Yng ZHANG,Ying LIU,Tong-Lai ZHANG. Theoretical and Experimental Studies on the Crystal Morphology of Transition-Metal Carbohydrazide Perchlorate Complexes[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2463-2471.
[13] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267.
[14] Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2293-2300.
[15] Wan-Fei LI,Mei-Nan LIU,Jian WANG,Yue-Gang ZHANG. Progress of Lithium/Sulfur Batteries Based on Chemically Modified Carbon[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 165-182.