Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (09): 2047-2055    DOI: 10.3866/PKU.WHXB201306211
CATALYSIS AND SURFACE SCIENCE     
Effect of Surface Promoters-Modifying on Catalytic Performance of Cu/ZnO/Al2O3 Methanol Synthesis Catalyst
HAO Ai-Xiang, YU Yang, CHEN Hai-Bo, MAO Chun-Peng, WEI Shi-Xin, YIN Yu-Sheng
Research Institute of Nanjing Chemical Industry Group, Nanjing 210048, P. R. China
Download:   PDF(2002KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Surface promoters-modified Cu/ZnO/Al2O3 (CZA) catalysts were prepared by a coprecipitationpost impregnation method and evaluated in methanol synthesis fromsyngas. The effects of Zr, Ba, and Mn as promoters, the reaction temperature and run time over CZA and Zr-promoted CZA catalysts on catalytic performance were investigated, respectively. The catalysts were characterized by X-ray diffraction (XRD), N2-sorption, reactive N2O sorption, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of H2 (H2-TPD), scanning electron microscopy (SEM), and high-resolution transmittance electron microscopy (HR-TEM). The results showed that the space-time yield (STY) of methanol can be increased noticeably over the Zr-or Ba-promoted CZA catalyst before and after the heating treatment of the catalysts. The introduction of Mn as a promoter onto the CZA catalyst led to a decrease in the STY of methanol before heating treatment. The introduction of Zr as a promoter onto the CZA catalyst can decrease the temperature at which the STY of methanol reached the highest value and also improve the catalytic stability. A hydrogen molecule can be adsorbed and then activated over Cu0 and ZnO. The strong interaction between Cu0 and ZnO is favorable for improving the catalytic performance of the CZA catalyst. The decrease in catalytic performance after heating treatment of the CZA catalysts is attributed to a growth of Cu0 crystallites. Based on the results of catalytic performance and characterization, a possible "bidirectional but synchronous catalytic reaction course" in methanol synthesis from syngas over a CZA catalyst is proposed.



Key wordsPromoter      Zirconium      Barium      Cu/ZnO/Al2O3 catalyst      Methanol synthesis      Reaction course     
Received: 08 April 2013      Published: 21 June 2013
MSC2000:  O643  
Fund:  

The project was supported by the China Petroleum& Chemical Corporation on the Manufacture of Catalyst for Methanol Synthesis from Coal-derived Syngas (HX-KA12F001202).

Corresponding Authors: HAO Ai-Xiang     E-mail: haoax.nhgs@sinopec.com
Cite this article:

HAO Ai-Xiang, YU Yang, CHEN Hai-Bo, MAO Chun-Peng, WEI Shi-Xin, YIN Yu-Sheng. Effect of Surface Promoters-Modifying on Catalytic Performance of Cu/ZnO/Al2O3 Methanol Synthesis Catalyst. Acta Phys. Chim. Sin., 2013, 29(09): 2047-2055.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201306211     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I09/2047

(1) Liu, L.; Zhao, T. S.; Ma, Q. X.; Shen, Y. F. J. Natural Gas Chem. 2009, 18, 375. doi: 10.1016/S1003-9953(08)60121-8
(2) Koeppel, R. A.; Baiker, A.; Wokaun, A. Appl. Catal. A-Gen.1992, 84, 77. doi: 10.1016/0926-860X(92)80340-I
(3) Gotti, A.; Prins, R. J. Catal. 1998, 178, 511. doi: 10.1006/jcat.1998.2167
(4) Ma, L.; Wainwright, M. S. Appl. Catal. A-Gen. 1999, 187,89. doi: 10.1016/S0926-860X(99)00200-8
(5) Ovesen, C. V.; Clausen, B. S.; Schotz, J.; Stoltze, P.; Topsoe, H.;Norskov, J. K. J. Catal. 1997, 168, 133. doi: 10.1006/jcat.1997.1629
(6) Lee, D.; Jung, G. S.; Lee, H. C.; Lee, J. S. Catal. Today 2006,111, 373. doi: 10.1016/j.cattod.2005.10.062
(7) Ma, Y. C.; Ge, Q. J.; Li, W. Z.; Xu, H. Y. Appl. Catal. BEnviron.2009, 90, 99 doi: 10.1016/j.apcatb.2009.02.020
(8) Shen, W. J.; Ichihashi, Y. C.; Ando, H.; Okumura, M.; Haruta,M.; Matsumura, Y. Appl. Catal. A-Gen. 2001, 217, 165. doi: 10.1016/S0926-860X(01)00606-8
(9) Hong, C. Q.; Qiu, D.; Cao, J. P.; Zhang, Z. D.; Fu, Y. C. J. Fuel Chem. Technol. 2001, 29, 355. [洪传庆,仇冬,曹建平,张祖硕,傅玉川.燃料化学学报, 2001, 29, 355.]
(10) Spencer, M. S. Catal. Lett. 1998, 50, 37. doi: 10.1023/A:1019098414820
(11) Wang, L. L.; Yang, L. M.; Zhang, Y. H.; Ding, W.; Chen, S. P.;Fang,W. P.; Yang, Y. Q. Fuel Process. Technol. 2010, 91, 723.doi: 10.1016/j.fuproc.2010.02.003
(12) Liu, X. M. Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518. doi: 10.1021/ie020979s
(13) Jensen, J. R.; Johannessen, T.; Wedel, S.; Livbjerg, H. J. Catal.2003, 218, 67. doi: 10.1016/S0021-9517(03)00047-2
(14) Hu, Z. H.; Chen, S. Y.; Peng, S. Y. J. Colloid Interface Sci.1996, 182, 461. doi: 10.1006/jcis.1996.0488
(15) Hu, Z. H.; Chen, S. Y.; Peng, S. Y. J. Colloid Interface Sci.1996, 182, 457. doi: 10.1006/jcis.1996.0487
(16) Xu, H. Y.; Chu, W.; Ci, Z. M. Acta Phys. -Chim. Sin. 2007, 23,1042. [徐慧远,储伟,慈志敏.物理化学学报, 2007, 23,1042.] doi: 10.3866/PKU.WHXB20070715
(17) Qiu, D.; Chen, H. B.; Huang, J. Q.; Cao, J. P.; Yin, H. Q. AMicrowave Treatment Method toward Cu-based MethanolSynthesis Catalysts. CN Patent 101450311A, 2009-06-10.[仇冬,陈海波,黄金钱, 曹建平, 殷惠琴. 一种提高铜基催化剂性能的微波处理方法: 中国, CN101450311A[P]. 2009-06-10.]
(18) Meshkini, F.; Taghizadeh, M.; Bahmani, M. Fuel 2010, 89,170. doi: 10.1016/j.fuel.2009.07.007
(19) Samei, E.; Taghizadeh, M.; Bahmani, M. Fuel Process. Technol.2012, 96, 128. doi: 10.1016/j.fuproc.2011.12.028
(20) Xu, Y.; Xia, H. T.; Liu, Z. Q. Design and Preparation Technology of Catalyst; Chemical Industry Press: Beijing, 2003;pp 197-200. [许越,夏海涛,刘振琦. 催化剂设计与制备工艺.北京: 化学工业出版社, 2003: 197-200.]
(21) Yu, Y.; Guo, Y. L.; Zhan, W. C.; Guo, Y.; Wang, Y. Q.; Wang, Y.S.; Zhang, Z. G.; Lu, G. Z. J. Mol. Catal. A-Chem. 2011, 337,77. doi: 10.1016/j.molcata.2011.01.019
(22) Chu, Z.; Chen, H. B.; Yu, Y.; Wang, Q.; Fang, D. Y. J. Mol. Catal. A-Chem. 2013, 366, 48. doi: 10.1016/j.molcata.2012.09.007
(23) Wang, D. J.; Tao, F. R.; Zhao, H. H.; Song, H. J.; Chou, L. J.Chin. J. Catal. 2011, 32, 1452. [王丹君,陶芙蓉, 赵华华,宋焕玲, 丑凌军.催化学报, 2011, 32, 1452.] doi: 10.1016/S1872-2067(10)60256-2
(24) Shan, H. B.; Zhang, Z. T. J. Eur. Ceram. Soc. 1997, 17,713. doi: 10.1016/S0955-2219(96)00087-8
(25) Robinson, W. R. A. M.; Mol, J. C. Appl. Catal. 1990, 63,165. doi: 10.1016/S0166-9834(00)81713-3
(26) Behrens, M.; Studt, F.; Kasatkin, L.; Kühl, S.; Hävecker, M.;Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B.L.; Tovar, M.; Fischer, R. W.; Nørskov, J. K.; Schlögl, R.Science 2012, 336, 893. doi: 10.1126/science.1219831
(27) Matsumura, Y.; Ishibe, H. J. Catal. 2009, 268, 282. doi: 10.1016/j.jcat.2009.09.026
(28) Karelovic, A.; Bargibant, A.; Fernández, C.; Ruiz, P. Catal. Today 2012, 197, 109. doi: 10.1016/j.cattod.2012.07.029
(29) Sloczyński, J.; Grabowski, R.; Kozlowska, A.; Olszewski, P.;Lachowska, M.; Skrzypek, J.; Stoch, J. Appl. Catal. A-Gen.2003, 249, 129. doi: 10.1016/S0926-860X(03)00191-1
(30) Zhou, G. D.; Duan, L. Y. Basal Structural Chemistry, 3rd ed.;Beijing University Press: Beijing, 2002: pp 87-90. [周公度,段连运. 结构化学基础. 第三版. 北京: 北京大学出版社, 2002:87-90.]
(31) Li, Z.; Yan, S. W.; Fan, H. Fuel 2013, 106, 178. doi: 10.1016/j.fuel.2012.11.003
(32) Li, Z.; Zheng, H.; Xie, K. C. Chin. J. Catal. 2008, 29, 431.[李忠,郑华艳,谢克昌. 催化学报, 2008, 29, 431.]
(33) Zhang, L. X.; Zhang, Y. C.; Chen, S. Y. Appl. Catal. A-Gen.2012, 415-416, 118.
(34) Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.;Spadaro, L.; Frusteri, F. Appl. Catal. A-Gen. 2008, 350, 16. doi: 10.1016/j.apcata.2008.07.028
(35) Wang, S.; Mao, D. S.; Guo, X. M.; Lu, G. Z. Acta Phys. -Chim. Sin. 2011, 27, 2651. [王嵩,毛东森, 郭晓明,卢冠忠. 物理化学学报, 2011, 27, 2651.] doi: 10.3866/PKU.WHXB20111018
(36) Herman, R. G.; Klier, K.; Simmons, G. W.; Finn, B. P.; Bulko, J.B. J. Catal. 1979, 56, 407.
(37) Pirim, C.; Krim, L. Chem. Phys. 2011, 380, 67. doi: 10.1016/j.chemphys.2010.12.008
(38) Zhen, K. J.; Wang, G. J.; Bi, Y. L.; Li, R. S.; Kan, Q. B.Catalysis Foundation, 3rd ed.; Science Press: Beijing, 2004; pp20-22. [甄开吉,王国甲, 毕颖丽,李荣生, 阚秋斌.催化作用基础.第三版.北京:科学出版社, 2004: 20-22.]

[1] WANG Rui, LAN Li, GONG Mao-Chu, CHEN Yao-Qiang. Catalytic Combustion of Gasoline Particulate Soot over CeO2-ZrO2 Catalysts[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1747-1757.
[2] HU Wei, WANG Yun, SHANG Hong-Yan, XU Hai-Di, ZHONG Lin, CHEN Jian-Jun, GONG Mao-Chu, CHEN Yao-Qiang. Effects of Zr Addition on the Performance of the Pd-Pt/Al2O3 Catalyst for Lean-Burn Natural Gas Vehicle Exhaust Purification[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1771-1779.
[3] WANG Bao-Wei, LIU Si-Han, HU Zong-Yuan, LI Zhen-Hua, MA Xin-Bin. Effect of H2S Concentration on MoO3/Al2O3 and CoO-MoO3/Al2O3 Catalysts for Sulfur-Resistant Methanation[J]. Acta Phys. Chim. Sin., 2015, 31(3): 545-551.
[4] XING Jian-Dong, JING Fang-Li, CHU Wei, SUN Hong-Li, YU Lei, ZHANG Huan, LUO Shi-Zhong. Improvement of Adsorptive Separation Performance for C2H4/C2H6 Mixture by CeO2 Promoted CuCl/Activated Carbon Adsorbents[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2158-2164.
[5] CHEN Wei-Miao, DING Yun-Jie, XUE Fei, SONG Xian-Gen. Role of Common Promoters in Rh-Based Catalysts for CO Hydrogenation to C2-Oxygenates[J]. Acta Phys. Chim. Sin., 2015, 31(1): 1-10.
[6] WANG Guan-Nan, CHEN Li-Min, GUO Yuan-Yuan, FU Ming-Li, WU Jun-Liang, HUANG Bi-Chun, YE Dai-Qi. Effect of Chromium Doping on the Catalytic Behavior of Cu/ZrO2/CNTs-NH2 for the Synthesis of Methanol from Carbon Dioxide Hydrogenation[J]. Acta Phys. Chim. Sin., 2014, 30(5): 923-931.
[7] GUO Zhang-Long, HUANG Li-Qiong, CHU Wei, LUO Shi-Zhong. Effects of Promoter on NiMgAl Catalyst Structure and Performance for Carbon Dioxide Reforming of Methane[J]. Acta Phys. Chim. Sin., 2014, 30(4): 723-728.
[8] YANG Chao, LIU Xiao-Qing, HUANG Bi-Chun, WU You-Ming. Structural Properties and Low-Temperature SCR Activity of Zirconium-Modified MnOx/MWCNTs Catalysts[J]. Acta Phys. Chim. Sin., 2014, 30(10): 1895-1902.
[9] LI Jiang-Bing, MA Hong-Fang, ZHANG Hai-Tao, SUN Qi-Wen, YING Wei-Yong, FANG Ding-Ye. Comparison of FeMn, FeMnNa and FeMnK Catalysts for the Preparation of Light Olefins from Syngas[J]. Acta Phys. Chim. Sin., 2014, 30(10): 1932-1940.
[10] ZHAO Feng-Qi, ZHANG Heng, AN Ting, ZHANG Xiao-Hong, YI Jian-Hua, XU Si-Yu, WANG Ying-Lei. Preparation, Characterization and Combustion Catalytic Action of Bismuth/Zirconium Gallate[J]. Acta Phys. Chim. Sin., 2013, 29(04): 777-784.
[11] ZHAN Hong-Quan, JIANG Xiang-Ping, LI Xiao-Hong, LUO Zhi-Yun, CHEN Chao, LI Yue-Ming. Formation Mechanism of Barium Titanate Nanoparticle Aggregations[J]. Acta Phys. Chim. Sin., 2011, 27(12): 2927-2932.
[12] MAO Dong-Sen, GUO Qiang-Sheng, YU Jun, HAN Lu-Peng, LU Guan-Zhong. Effect of Cerium Addition on the Catalytic Performance of Cu-Fe/SiO2 for the Synthesis of Lower Alcohols from Syngas[J]. Acta Phys. Chim. Sin., 2011, 27(11): 2639-2645.
[13] ZHAO Gao-Feng, XIANG Bing, SHEN Xue-Feng, SUN Jian-Min, BAI Yan-Zhi, WANG Yuan-Xu. Structures and Stabilities of Small Zirconium Oxide Clusters[J]. Acta Phys. Chim. Sin., 2011, 27(05): 1095-1102.
[14] LANG Bao, LI Xiu-Jin, JI Sheng-Fu, FABIEN Habimana, LI Cheng-Yue. Effect of La Promoter on the Structure and Performance of Ni/SBA-15 Catalyst in the Reforming of Simulated Biogas to Syngas[J]. Acta Phys. Chim. Sin., 2009, 25(08): 1611-1617.
[15] ZHANG Nuo-Wei, HUANG Chuan-Jing, KUANG Fei-Ping, GAO Xiao-Xiao, WENG Wei-Zheng, WAN Hui-Lin. Effect of a Mg Promoter on the Structure and Catalytic Performance of a Co/Mg/HZSM-5 Catalyst for the Partial Oxidation of Methane to Syngas[J]. Acta Phys. Chim. Sin., 2008, 24(12): 2165-2171.