Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (09): 2062-2068    DOI: 10.3866/PKU.WHXB201306213
Microwave-Hydrothermal Synthesis and Photocatalytic Activity of Zn2GeO4 Nanoribbons
DU Shu-Qing, YUAN Yu-Feng, TU Wei-Xia
State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Download:   PDF(2652KB) Export: BibTeX | EndNote (RIS)      


Zn2GeO4 nanoribbons were synthesized via a microwave-hydrothermal method. The effects of reaction factors, such as reaction temperature, amount of reactants and template, were investigated and optimized for the formation of Zn2GeO4 nanoribbons. The products were characterized by various techniques including field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). Photocatalytic activities of the synthesized Zn2GeO4 nanostructures were evaluated for the degradation of aqueous methyl orange. Experimental results indicated that Zn2GeO4 nanoribbons can be synthesized from Zn(CH3COO)2 and GeO2 (molar ratio 2: 1) under microwave irradiation at 160℃ for 20 min. The nanoribbons have uniformsizes with widths of 100 nm and are tens of micrometers in length. Compared with conventional hydrothermal methods, Zn2GeO4 nanoribbons from microwave-hydrothermal synthesis have less native defects, lower PL spectra, 50.7% larger specific surface area, and 54.7% higher photocatalytic activity.

Key wordsMicrowave-hydrothermal synthesis      Zn2GeO4      Nanoribbon      Photocatalyst      Degradation of organics     
Received: 26 April 2013      Published: 21 June 2013
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21106006).

Corresponding Authors: TU Wei-Xia     E-mail:
Cite this article:

DU Shu-Qing, YUAN Yu-Feng, TU Wei-Xia. Microwave-Hydrothermal Synthesis and Photocatalytic Activity of Zn2GeO4 Nanoribbons. Acta Phys. -Chim. Sin., 2013, 29(09): 2062-2068.

URL:     OR

(1) Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.;Ye, J. Adv. Mater. 2012, 24 (2), 229. doi: 10.1002/adma.201102752
(2) Chen, C. C.; Ma, W. H.; Zhao, J. C. Chem. Soc. Rev. 2010, 39 (11), 4206. doi: 10.1039/b921692h
(3) Fujishima, A.; Zhang, X. T.; Tryk, D. A. Surf. Sci. Rep. 2008, 63 (12), 515. doi: 10.1016/j.surfrep.2008.10.001
(4) Yan, H. J.; Yang, J. H.; Ma, G. J.;Wu, G. P.; Zong, X.; Lei, Z.B.; Shi, J. Y. J. Catal. 2009, 266 (2), 165. doi: 10.1016/j.jcat.2009.06.024
(5) Ying, H.; Wang, Z. Y.; Guo, Z. D.; Shi, Z. J.; Yang, S. F. Acta Phys. -Chim. Sin. 2011, 27 (6), 1482. [应红, 王志永,郭政铎,施祖进, 杨上峰.物理化学学报, 2011, 27 (6), 1482.] doi: 10.3866/PKU.WHXB20110630
(6) Stevens, R.; Woodfield, B. F.; Boerio-Goates, J.; Crawford, M.K. J. Chem. Thermodyn. 2004, 36 (5), 349. doi: 10.1016/j.jct.2003.12.010
(7) Pei, L. Z.; Yang, Y.; Yang, L. J.; Fan, G. G.; Yuan, C. Z.; Zhang,Q. F. Solid State Commun. 2011, 151 (14-15), 1036. doi: 10.1016/j.ssc.2011.04.017
(8) Liu, Z. S.; Jing, X. P.; Wang, L. X. J. Electrochem. Soc. 2007,154 (6), H500. doi: 10.1149/1.2720769
(9) Takeshita, S.; Honda, J.; Isobe, T.; Sawayama, T.; Niikura, S. Cryst. Growth Des. 2010, 10 (10), 4494. doi: 10.1021/cg100753g
(10) Yoon, K. H.; Kim, J. H. Thin Solid Films 2010, 519 (5), 1583.doi: 10.1016/j.tsf.2010.08.157
(11) Yan, C. Y.; Singh, N. D.; Lee, P. S. Appl. Phys. Lett. 2010, 96 (5), 053108. doi: 10.1063/1.3297905
(12) Ma, B. J.; Wen, F. Y.; Jiang, H. F.; Yang, J. H.; Ying, P. L.; Li, C. Catal. Lett. 2010, 134 (1-2), 78. doi: 10.1007/s10562-009-0220-8
(13) Yan, S. C.; Wan, L. J.; Li, Z. S.; Zou, Z. G. Chem. Commun.2011, 47 (19), 5632. doi: 10.1039/c1cc10513b
(14) Huang, J. H.; Ding, K. N.; Hou, Y. D.; Wang, X. C.; Fu, X. C.ChemSusChem 2008, 1 (12), 1011. doi: 10.1002/cssc.200800166
(15) Chi, J. H.; Wang, J. Acta Phys. -Chim. Sin. 2010, 26 (8), 2306.[池俊红,王娟.物理化学学报, 2010, 26 (8), 2306.] doi: 10.3866/PKU.WHXB20100820
(16) Li, X. N.; Bai, S. L.; Yang, W. S. Acta Phys. -Chim. Sin. 2012, 28 (7), 1797. [李晓宁, 白守礼, 杨文胜.物理化学学报, 2012, 28 (7), 1797.] doi: 10.3866/PKU.WHXB201205081
(17) Yan, C. Y.; Lee, P. S. J. Phys. Chem. C 2009, 114 (1), 265. doi: 10.1021/jp909068v
(18) Yan, C. Y.; Lee, P. S. J. Phys. Chem. C 2009, 113 (32), 14135.doi: 10.1021/jp9050879
(19) Tsai, M. Y.; Yu, C. Y.; Wang, C. C.; Perng, T. Y. J. Cryst. Growth Des. 2008, 8 (7), 2264. doi: 10.1021/cg700924j
(20) Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.;Yan, S. C.; Zou, Z. G. J. Am. Chem. Soc. 2010, 132 (41), 14385.doi: 10.1021/ja1068596
(21) Yu, L.; Zou, R. J.; Zhang, Z. Y.; Song, G. S.; Chen, Z. G.; Yang,J. M.; Hu, J. Q. Chem. Commun. 2011, 47 (38), 10719. doi: 10.1039/c1cc14159g
(22) Mao, X. L.; Xu, D. X.; Fu, M. I.; Yuan, B. L.; Shi, J. W.; Cui, H.J. J. Chem. Eng. 2013, 218, 73. doi: 10.1016/j.cej.2012.12.031
(23) Nüchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Green Chem. 2004, 6 (3), 128. doi: 10.1039/b310502d
(24) Zhang, L.; Cao, X. F.; Ma, Y. L.; Chen, X. T.; Xue, Z. L.CrystEngComm 2010, 12 (10), 3201. doi: 10.1039/b927170h
(25) Du, J.; Li, X. L.; Wang, S. J.; Wu, Y. Z.; Hao, X. P.; Xu, C. W.;Zhao, X. J. Mater. Chem. 2012, 22 (22), 11390. doi: 10.1039/c2jm30882g
(26) Mou, Q. Y.; Li, X. J. Physics 2004, 33 (6), 438. [牟群英, 李贤军. 物理, 2004, 33 (6), 438.] doi: 0379-4148.0.2004.06.013
(27) Xiao, H. J.; Xu, Y. X.; Ning, Q. J. J. Shaanxi Univ. Sci. Tech. (Nat. Sci. Ed.) 2009, 27 (4), 164. [肖昊江,徐依玺,宁青菊.陕西科技大学学报(自然科学版), 2009, 27 (4), 164.]
(28) Zhang, L.; Cao, X. F.; Chen, X. T.; Xue, Z. L. CrystEngComm2011, 13, 2464. doi: 10.1039/c0ce00872a
(29) Boppana, V. B. R.; Hould, N. D.; Lobo, R. F. J. Solid State Chem. 2011, 184 (5), 1054. doi: 10.1016/j.jssc.2011.02.022
(30) Daharma, J.; Pisal, A. Simple Method of Measuring the BandGap Energy Value of TiO2 in the Powder Formusing a UV/Vis/NIR Spectrometer. (accessed Jun 18, 2013).
(31) Liu, Z. Q.; Zhou, Y. P.; Ge, C. C. Rare. Metal. Mat. Eng. 2006,35 (Suppl. 2), 104. [刘中清, 周艳平,葛昌纯. 稀有金属材料与工程, 2006, 35 (Suppl. 2), 104.] doi: 1002-185x.0.2006-S2-026

[1] Hui-Wen ZUO,Chun-Hai LU,Yu-Rong REN,Yi LI,Yong-Fan ZHANG,Wen-Kai CHEN. Pt4 Clusters Supported on Monolayer Graphitic Carbon Nitride Sheets for Oxygen Adsorption: A First-Principles Study[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1183-1190.
[2] Xiao-Xia CHANG,Jin-Long GONG. On the Importance of Surface Reactions on Semiconductor Photocatalysts for Solar Water Splitting[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 2-13.
[3] Chang. FENG,Xiao-Yan. DENG,Xiao-Xiao. NI,Wei-Bing. LI. Fabrication of Carbon Dots Modified Porous ZnO Nanorods with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2349-2357.
[4] Yan. SHAO,Fang-Ping. OUYANG,Sheng-Lin. PENG,Qi. LIU,Zhi-An. JIA,Hui. ZOU. First-Principles Calculations of Electronic Properties of Defective Armchair MoS2 Nanoribbons[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2083-2090.
[5] SUN Jin, LIANGWan-Zhen. Effects of External Field and Nanoribbon Length on the Electronic Structure and Properties of Graphene Nanoribbons[J]. Acta Phys. -Chim. Sin., 2014, 30(3): 439-445.
[6] LAN Ben-Yue, SHI Hai-Feng. Review of Systems for Photocatalytic Conversion of CO2 to Hydrocarbon Fuels[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2177-2196.
[7] YANG Zhi-Xiong, YANG Jin-Xin, LIU Qi, XIE Yu-Xing, XIONG Xiang, OUYANG Fang-Ping. Electronic Structure and Edge Modification of Armchair MoS2 Nanoribbons[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1648-1654.
[8] SHANG Yang, CHEN Yang, SHI Zhan-Bin, ZHANG Dong-Feng, GUO Lin. Synthesis and Visible Light Photocatalytic Activities of Au/Cu2O Heterogeneous Nanospheres[J]. Acta Phys. -Chim. Sin., 2013, 29(08): 1819-1826.
[9] YUAN Wen-Hui, LIU Xiao-Chen, LI Li. Improving Photocatalytic Performance for Hydrogen Generation over Co-Doped ZnIn2S4 under Visible Light[J]. Acta Phys. -Chim. Sin., 2013, 29(01): 151-156.
[10] ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, FU Xian-Zhi. Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile[J]. Acta Phys. -Chim. Sin., 2012, 28(10): 2336-2342.
[11] CHEN Yu-Hang, ZHANG Chao-Min, WU Jian-Bao, LIN Qi. Effect of O/N Substitutive Doping on the Band Structure and Transport Properties of the zigzag Boron Nitride Narrow-Nanoribbons[J]. Acta Phys. -Chim. Sin., 2012, 28(03): 567-572.
[12] CHEN Xiao-Yun, LU Dong-Fang, HUANG Jin-Feng, LU Yan-Feng, ZHENG Jian-Qiang. Preparation and Properties of N-F Co-Doped TiO2 Photocatalyst with Wide Range Light Response and Multipore Structure from Ionic Liquid-Water Mixture Solvent[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 161-169.
[13] LI Ben-Xia, WANG Yan-Fen, LIU Tong-Xuan. Adjustable Synthesis and Visible-Light Responsive Photocatalytic Performance of V2O5·xH2O-BiVO4 Nanocomposites[J]. Acta Phys. -Chim. Sin., 2011, 27(12): 2946-2952.
[14] XU Ning, ZHANG Chao, KONG Fan-Jie, SHI You-Jin. Transport Properties of Corrugated Graphene Nanoribbons[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2107-2110.
[15] LU Sheng-Yong, HUANG Yi-Long, WANG Qiu-Lin, LI Xiao-Dong, YAN Jian-Hua. Photocatalytic Degradation of Gaseous 1,2-Dichlorobenzene over TiO2/AC Photocatalysts[J]. Acta Phys. -Chim. Sin., 2011, 27(09): 2191-2199.