Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (09): 2019-2026    DOI: 10.3866/PKU.WHXB201306271
CATALYSIS AND SURFACE SCIENCE     
Adsorption of Co(Ⅱ) and Ni(Ⅱ) on Beishan Granite:Surface Complexation Model and Linear Free Energy Relationship
CHEN Zong-Yuan1, ZHANG Rui1, YANG Xing-Long1, WU Wang-Suo1, GUO Zhi-Jun1, LIU Chun-Li2
1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China;
2 Beijing National Laboratory for Molecular Sciences, Radiochemistry & Radiation Chemistry Key Laboratory for Fundamental Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(971KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The adsorption of Co(Ⅱ) and Ni(Ⅱ) on crushed Beishan granite (BS03, 600 m) was studied by a batch experimental method. The distribution coefficient (Kd) was found to vary as a function of the pH, ionic strength, and the initial concentrations of Co(Ⅱ) and Ni(Ⅱ). In the low pH range, the Kd values of Co(Ⅱ) and Ni(Ⅱ) decreased significantly as the ionic strength increased, whereas the effect of the ionic strength was weak in the high pH range. The adsorption of Co(Ⅱ) and Ni(Ⅱ) on granite was quantitatively interpreted by a model with one cation exchange reaction and two inner-sphere surface complexation reactions. A linear free energy relationship (LFER) between the equilibrium constants (K) of the surface complexation reactions and the hydrolysis stability constants of the divalent transition metals (OHK) was established. Predictions based on the LFER are in good agreement with the experimental results for the adsorption of Pb(Ⅱ) and Cu(Ⅱ) on granite.



Key wordsBeishan granite      Adsorption      Co(Ⅱ)      Ni(Ⅱ)      Surface complexation model      Linear free energy relationship     
Received: 29 March 2013      Published: 27 June 2013
MSC2000:  O647.32  
Fund:  

The project was supported by the National Natural Science Foundation of China (91226113, 11075006, 91026010) and Special Foundation for High Level Waste Disposal, China ([2012]494, [2007]840, [2012]851).

Corresponding Authors: GUO Zhi-Jun, LIU Chun-Li     E-mail: guozhj@lzu.edu.cn;liucl@pku.edu.cn
Cite this article:

CHEN Zong-Yuan, ZHANG Rui, YANG Xing-Long, WU Wang-Suo, GUO Zhi-Jun, LIU Chun-Li. Adsorption of Co(Ⅱ) and Ni(Ⅱ) on Beishan Granite:Surface Complexation Model and Linear Free Energy Relationship. Acta Phys. Chim. Sin., 2013, 29(09): 2019-2026.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201306271     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I09/2019

(1) Dong, D. M.; Ji, L.; Hua, X. Y.; Li, Y.; Zheng, N. Chem. J. Chin. Univ. 2004, 25, 247. [董德明,纪亮,花修艺,李鱼,郑娜.高等学校化学学报, 2004, 25, 247.]
(2) Sidhu, P.; Gilkes, R.; Posner, A. Journal of Inorganic and Nuclear Chemistry 1978, 40, 429. doi: 10.1016/0022-1902(78)80418-7
(3) Pyrzynska, K. TrAC Trends in Analytical Chemistry 2010, 29,718. doi: 10.1016/j.trac.2010.03.013
(4) Lesage, E.; Mundia, C.; Rousseau, D. P. L.; Van de Moortel, A.M. K.; Du Laing, G.; Meers, E.; Tack, F. M. G.; De Pauw, N.;Verloo, M. G. Ecological Engineering 2007, 30, 320. doi: 10.1016/j.ecoleng.2007.04.007
(5) Harter, R. Soil Science Society of America Journal 1992, 56,444. doi: 10.2136/sssaj1992.03615995005600020017x
(6) Alvarez-Puebla, R. A.; Valenzuela-Calahorro, C.; Garrido, J. J.Langmuir 2004, 20, 3657. doi: 10.1021/la0363231
(7) Anderson, P.; Christensen, T. European Journal of Soil Science1988, 39, 15. doi: 10.1111/ejs.1988.39.issue-1
(8) Gao, S.; Walker, W. J.; Dahlgren, R. A.; Bold, J. Water, Air Soil Pollution 1997, 93, 331.
(9) Jeon, B. H.; Dempsey, B. A.; Burgos, W.D.; Royer, R.A. Water Research 2003, 37, 4135. doi: 10.1016/S0043-1354(03)00342-7
(10) Vengris, T. Applied Clay Science 2001, 18, 183. doi: 10.1016/S0169-1317(00)00036-3
(11) Wang, J.; Fan, X. H.; Xu, G. Q.; Zheng, H. L. Geological Disposal of High Level Radioactive Waste in China: Progress in the Last Decade (1991-2000); Atomic Energy Press: Beijing,2004; pp 1-12. [王驹, 范显华. 徐国庆,郑华铃. 中国高放废物地质处置十年进展.北京:原子能出版社, 2004: 1-12.]
(12) Chen, T.; Sun, M.; Li, C.; Tian, W. Y.; Liu, X. Y.; Wang, L. H.;Wang, X. Y.; Liu, C. L. Radiochimica Acta 2010, 98, 301. doi: 10.1524/ract.2010.1717
(13) Chen, T.; Tian, W. Y.; Sun, M.; Li, C.; Liu, X. Y.; Wang, L. H.;Wang, X. Y.; Liu, C. L. Chin. J. Inorg. Chem. 2009, 25, 761.[陈涛, 田文宇,孙茂,黎春,刘晓宇, 王路化, 王祥云, 刘春立.无机化学学报, 2009, 25, 761.]
(14) Liu, C. L.; Wang, X. Y.; Li, S. S.; Wang, Z. M.; Gao, H.; Li, B.;Wen, R. Y.; Wang, H. F.; Tang, L. T.; Xin, C. T. Radiochimica Acta 2001, 89, 639. doi: 10.1524/ract.2001.89.10.639
(15) Guo, Z. J.; Chen, Z. Y.;Wu, W. S.; Liu, C. L.; Chen, T.; Tian, W.Y.; Li, C. Sci. Chin. Ser. B-Chem. 2011, 41, 907. [郭治军, 陈宗元,吴王锁, 刘春立,陈涛,田文宇,黎春.中国科学: 化学, 2011, 41, 907.]
(16) Guo, Z. J.; Chen, Z. Y.;Wu, W. S.; Liu, C. L.; Chen, T.; Tian, W.Y.; Li, C. Acta Phys. -Chim. Sin. 2011, 27, 2222. [郭治军,陈宗元,吴王锁, 刘春立,陈涛,田文宇,黎春. 物理化学学报, 2011, 27, 2222.] doi: 10.3866/PKU.WHXB20110918
(17) Bradbury, M. H.; Baeyens, B. Geochimica et Cosmochimica Acta 2005, 69, 875. doi: 10.1016/j.gca.2004.07.020
(18) Bradbury, M. H.; Baeyens, B. Geochimica et Cosmochimica Acta 2009, 73, 1004. doi: 10.1016/j.gca.2008.11.016
(19) Parkhurst, D. L.; Appelo, C. A. J. Users Guide to Phreeqc: A Computer Program for Speciation, Batch Reaction, Onedimensional Transport, and Inverse Geochemical Calculations,version 2; U.S. Geological Survey: Earth Science InformationCenter, Water-resources investigations Report; Denver, USA,1999; pp 99-4259.
(20) Parkhurst, D. L.; Appelo, C. A. J. minteq.v4.dat. http://www.brr.cr.usgs.gov/projects/GWC_coupled/phreeqc/ (accessed Oct 27,2008).
(21) Guo, Z.; Xu, J.; Shi, K.; Tang, Y.; Wu, W.; Tao, Z. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009,339, 126. doi: 10.1016/j.colsurfa.2009.02.007
(22) Tan, X.; Chen, C.; Yu, S.; Wang, X. Applied Geochemistry 2008,23, 2767. doi: 10.1016/j.apgeochem.2008.07.008
(23) Yang, S. T.; Sheng, G. D.; Guo, Z. Q.; Tan, X. L.; Xu, J. Z.;Wang, X. K. Sci. China Ser. B-Chem. 2012, 42, 844. [杨世通,盛国栋, 郭志强, 谭小丽, 徐进章, 王祥科. 中国科学: 化学,2012, 42, 844. ]
(24) Davis, J. A.; Meece, D. E.; Kohler, M.; Curtis, G. P. Geochimica et Cosmochimica Acta 2004, 68, 3621. doi: 10.1016/j.gca.2004.03.003
(25) Tertre, E.; Hofmann, A.; Berger, G. Geochimica et Cosmochimica Acta 2008, 72, 1043. doi: 10.1016/j.gca.2007.12.015
(26) Park, C. K.; Hahn, P. S. Korean Journal of Chemical Engineering 1999, 16, 758. doi: 10.1007/BF02698348
(27) Papelis, C. Advances in Environmental Research 2001, 5,151. doi: 10.1016/S1093-0191(00)00053-8

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[2] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[3] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. Chim. Sin., 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. Chim. Sin., 2017, 33(2): 426-434.
[8] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2013-2021.
[9] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[10] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[11] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1998-2003.
[12] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2264-2270.
[13] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2133-2145.
[14] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1933-1940.
[15] JIAN Yuan, MU Wan-Jun, LIU Ning, PENG Shu-Ming. Removal of Sr2+ Ions by Ta-Doped Hexagonal WO3: Zeta Potential Measurements and Adsorption Mechanism Determination[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2052-2058.