Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (09): 1981-1988    DOI: 10.3866/PKU.WHXB201306272
ELECTROCHEMISTRY AND NEW ENERGY     
Hierarchically Porous Carbon/DMcT/PEDOT-PSS Ternary Composite as a Cathode Material for Lithium-Ion Battery
CHI Ting-Yu, LI Han, WANG Geng-Chao
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials, Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
Download:   PDF(1079KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Activated hierarchically porous carbon (aHPC) was fabricated by calcination, etching and KOH activation using phenol-formaldehyde resin (PF) as the carbon precursor and nano-CaCO3 dispersion as the double pore-forming agent. On this basis, the aHPC/2,5-dimercapto-1,3,4-thiadiazole (DMcT) composite was prepared through a solution immersion method using aHPC as the substrate, and poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate) (PEDOT-PSS) was coated subsequently onto the surface of aHPC/DMcT by in situ oxidative polymerization to prepare the aHPC/DMcT/PEDOT-PSS composite. The structure, morphology, and electrochemical properties of the composite were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and electrochemical measurements. The results showed that the amount of the functional groups in aHPC pores increased after HPC was activated by KOH, resulting in an enhancement (52%) of the adsorption of DMcT. Moreover, almost all of the DMcT was absorbed into the aHPC pores. It was found that the initial discharge capacity of the aHPC/DMcT composite was 236 mAh·g-1 and its specific capacity remained at 65 mAh·g-1 after 20 cycles. For comparison, with a surface coated with a layer of PEDOT-PSS conductive film, the initial discharge capacity of the aHPC/DMcT/PEDOT-PSS composite was up to 280 mAh·g-1 and it remained at 138 mAh·g-1 after 20 cycles (49.1% capacity retention).



Key words2,5-Dimercapto-1,3,4-thiadiazole      Poly(3,4-ethylenedioxythiophene)-poly (styrenesulfonate)      Hierarchically porous carbon      Composite electrode materials      Lithium-ion battery     
Received: 12 April 2013      Published: 27 June 2013
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51173042), Innovation Program of Shanghai Municipal Education Commission, China (11ZZ55), and Fundamental Research Funds for the Central Universities, China.

Corresponding Authors: WANG Geng-Chao     E-mail: gengchaow@ecust.edu.cn
Cite this article:

CHI Ting-Yu, LI Han, WANG Geng-Chao. Hierarchically Porous Carbon/DMcT/PEDOT-PSS Ternary Composite as a Cathode Material for Lithium-Ion Battery. Acta Phys. Chim. Sin., 2013, 29(09): 1981-1988.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201306272     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I09/1981

(1) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
(2) Yin, L. C.; Wang, J. L.; Lin, F. J.; Yang, J.; Nuli, Y. Energy Environ. Sci. 2012, 5, 6966. doi: 10.1039/c2ee03495f
(3) Wang, J. Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H.K. J. Power Sources 2011, 196 (16), 7030. doi: 10.1016/j.jpowsour.2010.09.106
(4) Xin, S.; Guo, Y. G.; Wan, L. J. Accounts Chem. Res. 2012, 45 (10), 1759. doi: 10.1021/ar300094m
(5) Visco, S. J.; DeJonghe, L. C. J. Electrochem. Soc. 1988, 135 (12), 2905. doi: 10.1149/1.2095460
(6) Yu, L.; Wang, X. H.; Li, J.; Jing, X. B.; Wang, F. S. Chem. J. Chin. Univ. 2000, 21 (2), 311. [于雷, 王献红, 李季, 景遐斌, 王佛松.高等学校化学学报, 2000, 21 (2), 311.]
(7) Zhang, J. H.; Zhang, Y. S.; Zheng, M. P.; Qi, L.; Feng, B.; Li, L.Acta Phys. -Chim. Sin. 2007, 23 (Supp), 51. [张敬华, 张永生, 郑绵平, 其鲁,冯波,李立.物理化学学报, 2007, 23 (Supp), 51.] doi: 10.3866/PKU.WHXB2007Supp12
(8) Henderson, J. C.; Kiya, Y.; Hutchison, G. R.; Abruna, H. D.J. Phys. Chem. C 2008, 112 (10), 3989. doi: 10.1021/jp076774k
(9) Oyama, N.; Tatsuma, T.; Sato, T.; Sotomura, T. Nature 1995,373, 598. doi: 10.1038/373598a0
(10) Xue, L. J.; Li, J. X.; Hu, S. Q.; Zhang, M. X.; Zhou, Y. H.;Zhan, C. M. Electrochem. Commun. 2003, 5 (10), 903. doi: 10.1016/j.elecom.2003.08.018
(11) Kiya, Y.; Hutchison, G. R.; Henderson, J. C.; Sarukawa, T.;Hatozaki, O.; Oyama, N.; Abruña, H. D. Langmuir 2006, 22 (25), 10554. doi: 10.1021/la061213q
(12) Kiya, Y.; Iwata, A.; Sarukawa, T.; Henderson, J. C.; Abruña, H.D. J. Power Sources 2007, 173, 522. doi: 10.1016/j.jpowsour.2007.04.086
(13) Chi, T. Y.; Li, H.; Li, X. W.; Bao, H.; Wang, G. C. Electrochim. Acta 2013, 96, 206. doi: 10.1016/j.electacta.2013.02.100
(14) Canobre, S. C.; Almeida, D. A. L.; Fonseca, C. P.; Neves, S.Electrochem. Acta 2009, 54 (26), 6383. doi: 10.1016/j.electacta.2009.06.002
(15) Jin, L. F.;Wang, G. C.; Li, X. W.; Li, L. B. J. Appl. Electrochem.2011, 41 (4), 377. doi: 10.1007/s10800-010-0246-z
(16) Ortega, P.; Vera, L.; Guzman, M. Macromol. Chem. Phys. 1997,198 (9), 2949. doi: 10.1002/macp.1997.021980923
(17) Park, J. E.; Park, S. G.; Koukitu, A.; Hatozaki, O.; Oyama, N.Synth. Met. 2004, 140 (2-3), 121. doi: 10.1016/j.synthmet.2003.04.001
(18) Wang, G. C.; Jin, L. F.; Ye, J. K.; Li, X. W. Mater. Chem. Phys.2010, 122 (1), 224. doi: 10.1016/j.matchemphys.2010.02.038
(19) Xing, W.; Huang, C. C.; Zhuo, S. P.; Yuan, X.; Wang, G. Q.;Hulicova-Jurcakova, D.; Yan, Z. F.; Lu, G. Q. Carbon 2009, 47 (7), 1715. doi: 10.1016/j.carbon.2009.02.024
(20) Yi, J.; Li, X. P.; Hu, S. J.; Li, W. S.; Zhou, L.; Xu, M. Q.; Lei, J.F.; Hao, L. S. J. Power Sources 2011, 196 (16), 6670. doi: 10.1016/j.jpowsour.2010.12.017
(21) Hasegawa, G.; Kanamori, K.; Nakanishi, K. Microporous Mesoporous Mat. 2012, 155 (1), 265. doi: 10.1016/j.2012.02.001
(22) Yang, J.; Zhou, X. Y.; Zou, Y. L. ; Tang, J. J. Electrochim. Acta2011, 56 (24), 8576. doi: 10.1016/j.electacta.2011.07.047
(23) Guo, B. K.; Wang, X. Q.; Fulvio, P. F.; Chi, M. F.; Mahurin, S.M.; Sun, X. G.; Dai, S. Adv. Mater. 2011, 23 (40), 4661. doi: 10.1002/adma.201102032
(24) Kim, Y.; Jo, C.; Lee, J.; Lee, C. W.; Yoon, S. J. Mater. Chem.2012, 22, 1453. doi: 10.1039/c1jm15053g
(25) Pope, J. M.; Sato, T.; Shoji, E.; Oyama, N.;White, K. C.; Buttry,D. A. J. Electrochem. Soc. 2002, 149 (7), A939. doi: 10.1149/1.1482768
(26) Sun, X. M.; Li, Y. D. Angew. Chem. Int. Edit. 2004, 43 (5), 597.doi: 10.1002/anine.200353212
(27) Han, Y. Q.; Lu, Y. Synth. Met. 2008, 158 (19-20), 744. doi: 10.1016/j.synthmet.2008.04.028
(28) Li, J. X.; Zhan, H.; Zhou, Y. H. Electrochem. Commun. 2003, 5 (7), 555. doi: 10.1016/S1388-2481(03)00121-8

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[10] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[11] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[12] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1056-1061.
[13] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(4): 969-974.
[14] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[15] ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He. Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(5): 905-912.