Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (09): 1900-1906    DOI: 10.3866/PKU.WHXB201307021
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Study of Hydrogen Adsorption on Pt and Pt-Based Bimetallic Surfaces by Density Functional Theory
GAO Zi-Feng, CHEN Hao, QI Sui-Tao, YI Chun-Hai, YANG Bo-Lun
Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
Download:   PDF(914KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The surface energies and surface relaxation of Pt(100), (110), and (111) surfaces, as well as the hydrogen adsorption behavior on three Pt surfaces and M-Pt(111) (M=Al, Fe, Co, Ni, Cu, Pd) bimetallic surfaces with a coverage of 0.25 ML were calculated by density functional theory (DFT). The most favorable adsorption sites, adsorption energies, and relaxation during adsorption were obtained. The hydrogen local density of states before and after the adsorption, the positions of the d-band center of different bimetallic surfaces with respect to the Fermi level were analyzed and further related to hydrogen adsorption energies. The calculations showed that the easiest adsorption sites of hydrogen on Pt(100), Pt (110), and Pt(111) are, in order, the bridge site, the short bridge site, and the fcc hollow site. The Pt(111) surface has the lowest surface energy among the three Pt surfaces and the Pt(111) surface is the most stable structure. However, the fcc hollow site is the most stable adsorption site for different M-Pt(111) bimetallic surfaces. The Ni-Pt bimetallic surface showed the lowest hydrogen adsorption energy among the M-Pt(111) bimetallic surfaces. The Co-Pt bimetallic surface showed the next lowest hydrogen adsorption energy, indicating that hydrogen adsorption on Ni-Pt and Co-Pt bimetallic surfaces is more stable. In addition, the first layer and the second layer have an expanding tendency with some degree after hydrogen adsorption on Ni-Pt, Co-Pt, and Fe-Pt bimetallic surfaces. The addition of a 3d metal surface layer on Pt(111) was found to move the d-band center closer to the Fermi level when compared with the bulk Pt metal, and increases the hydrogen adsorption ability by means of the density of state analysis of the bimetallic surfaces model. This reveals that 3d-Pt bimetallic surfaces are likely to have better dehydrogenation activity than Pt.



Key wordsPlatinum      Platinum bimetallic surface      Hydrogen adsorption      Density functional theory      Density of states      Dehydrogenation activity     
Received: 26 April 2013      Published: 02 July 2013
MSC2000:  O641  
  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21006076), Specialized Research Fund for the Doctoral Program of Higher Education of China (20110201130002), and Fundamental Research Funds for the Central Universities, China (xjj2011062).

Corresponding Authors: QI Sui-Tao     E-mail: suitaoqi@mail.xjtu.edu.cn
Cite this article:

GAO Zi-Feng, CHEN Hao, QI Sui-Tao, YI Chun-Hai, YANG Bo-Lun. Study of Hydrogen Adsorption on Pt and Pt-Based Bimetallic Surfaces by Density Functional Theory. Acta Phys. -Chim. Sin., 2013, 29(09): 1900-1906.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201307021     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I09/1900

(1) Murray, L. J.; Dinc?, M.; Long, J. R. Chem. Soc. Rev. 2009, 38 (5), 1294. doi: 10.1039/b802256a
(2) Shukla, A. A.; Gosavi, P. V.; Pande, J. V.; Kumar, V. P.; Chary,K. V.; Biniwale, R. B. Int. J. Hydrog. Energy 2010, 35 (9),4020. doi: 10.1016/j.ijhydene.2010.02.014
(3) Bhasin, M. M.; McCain, J. H.; Vora, B. V.; Imai, T.; Pujado, P.R. Appl. Catal. A 2001, 221 (1), 397.
(4) Qi, S. T.; Yu, W. T.; William, W. L.; Yang, B. L.; Chen, J. G. Chin. J. Catal. 2010, 31 (8), 955. [齐随涛, 俞伟婷, WilliamW. Lonergan, 杨伯伦,陈经广.催化学报, 2010, 31 (8), 955.]doi: 10.1016/S1872-2067(09)60092-9
(5) Iwasa, N.; Takezawa, N. Top. Catal. 2003, 22 (3-4), 215.
(6) Zhu, G. L.; Yang, B. L. Prog. Chem. 2009, 21 (12), 2760. [朱刚利,杨伯伦. 化学进展, 2009, 21 (12), 2760. ]
(7) Desai, S. K.; Neurock, M.; Kourtakis, K. J. Phys. Chem. B2002, 106 (10), 2559. doi: 10.1021/jp0132984
(8) Flick, D. W.; Huff, M. C. Appl. Catal. A 1999, 187 (1), 13. doi: 10.1016/S0926-860X(99)00179-9
(9) Qi, S. T.; Huang, J.; Chen, H.; Gao, Z. F.; Yi, C. H.; Yang, B. L.Acta Chim. Sin. 2012, 70 (24), 2467. [齐随涛,黄俊,陈昊,高子丰,伊春海, 杨伯伦.化学学报, 2012, 70 (24),2467.] doi: 10.6023/A12080603
(10) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.;Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004,108 (46), 17886. doi: 10.1021/jp047349j
(11) Chen, J. G.; Menning, C. A.; Zellner, M. B. Surf. Sci. Rep. 2008,63 (5), 201. doi: 10.1016/j.surfrep.2008.02.001
(12) Chen, J. G.; Qi, S. T.; Humbert, M. P.; Menning, C. A.; Zhu, Y.X. Acta Phys. -Chim. Sin. 2010, 26 (4), 869. [陈经广,齐随涛,Humbert, M. P., Menning, C. A.,朱月香. 物理化学学报, 2010,26 (4), 869.] doi: 10.3866/PKU.WHXB20100441
(13) Løvvik, O. M.; Olsen, R. A. Phys. Rev. B 1998, 58 (16), 10890.doi: 10.1103/PhysRevB.58.10890
(14) Paul, J. F.; Sautet, P. Phys. Rev. B 1996, 53 (12), 8015. doi: 10.1103/PhysRevB.53.8015
(15) Kresse, G.; Hafner, J. Surf. Sci. 2000, 459 (3), 287. doi: 10.1016/S0039-6028(00)00457-X
(16) Huang, Y. L.; Liu, Z. P. Acta Phys. -Chim. Sin. 2008, 24 (9),1662. [黄永丽, 刘志平.物理化学学报, 2008, 24 (9),1662.] doi: 10.3866/PKU.WHXB20080923
(17) Watson, G. W.; Wells, R. P.; Willock, D. J.; Hutchings, G. J.J. Phys. Chem. B 2001, 105 (21), 4889. doi: 10.1021/jp002864c
(18) Lima, F. H.; Zhang, J.; Shao, M. H.; Sasaki, K.; Vukmirovic, M.B.; Ticianelli, E. A.; Adzic, R. R. J. Phys. Chem. C 2007, 111 (1), 404. doi: 10.1021/jp065181r
(19) Ren, Y. P.; Lu, Y. X.; Zi, Q. Acta Phys. -Chim. Sin. 2007, 23 (11), 1728. [任云鹏,鲁玉祥,姿琦.物理化学学报, 2007,23 (11), 1728.] doi: 10.3866/PKU.WHXB20071114
(20) Lynch, M.; Hu, P. Surf. Sci. 2000, 458 (1), 1.
(21) Zhang, J. M.; Ma, F.; Xu, K. W. Appl. Surf. Sci. 2004, 229 (1),34.
(22) Vitos, L.; Ruban, A.; Skriver, H. L.; Kollar, J. Surf. Sci. 1998,411 (1), 186.
(23) Ma, C. A.; Liu, T.; Chen, L. T. Acta Phys. -Chim. Sin. 2010, 26 (1), 155. [马淳安, 刘婷, 陈丽涛.物理化学学报, 2010, 26 (1), 155.] doi: 10.3866/PKU.WHXB20091224
(24) Vegge, T.; Hedegaard-Jensen, L. S.; Bonde, J.; Munter, T. R.;N?rskov, J. K. J. Alloy. Compd. 2005, 386 (1), 1.
(25) Bligaard, T.; Nørskov, J. K. Electrochim. Acta 2007, 52 (18),5512. doi: 10.1016/j.electacta.2007.02.041

[1] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[2] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[3] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[4] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[5] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[6] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[9] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[10] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[11] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[12] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[13] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[14] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[15] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1310-1323.