Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (09): 1907-1915    DOI: 10.3866/PKU.WHXB201307022
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Density Functional Theory Study on the Adsorption of Dodecylthiol on Au(111) Surface
FAN Xiao-Li, RAN Run-Xin, ZHANG Chao, YANG Yong-Liang
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, P. R. China
Download:   PDF(2055KB) Export: BibTeX | EndNote (RIS)      

Abstract  

By applying the first-principles methods based on density functional theory and the slab model, we have studied the non-dissociative and dissociated adsorptions of a dodecylthiol (C12H25SH) molecule on Au(111) surface. Based on the calculated results, the fate of the H atom has been analyzed, and the longchain adsorption and short-chain adsorption have been compared. We have performed structure optimizations for a series of initial structures with the S atom located on different sites with different tilt angles. This structure optimizations gave two surface structures before and after the dissociation of S―H; the standing-up and lying-down adsorption structures. Our calculations indicate that the C12H25SH molecule prefers to stay on the top site, the corresponding adsorption energies are 0.35-0.38 eV. The dissociated C12H25S group prefers to adsorb on the bri-fcc site, with adsorption energies of 2.01-2.09 eV. We have compared the non-dissociative C12H25SH/Au(111) and dissociated C12H25S/Au(111) with the H atom adsorbing onto Au and desorbing as H2, and found that the non-dissociative adsorption is more stable. The formation energy and the electronic structure showed that the non-dissociative adsorption belongs to the weak chemisorption, whereas the interaction between the S atom and Au surface becomes much stronger following cleavage of the S―H. A comparison of the adsorption of long-chain thiols on Au(111) surface with that of the short-chain thiols, indicates that the adsorption energies of the long-chain thiols are slightly larger, and the distances between the S atomand the surface Au atoms are slightly shorter.



Key wordsDensity functional theory      Dodecylthiol      Au(111) surface      Adsorption structure      Lying-down configuration      Electronic structure     
Received: 06 May 2013      Published: 02 July 2013
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (20903075, 21273172) and Program of Introducing Talents of Discipline to Universities, China (111 Project) (B08040).

Corresponding Authors: FAN Xiao-Li     E-mail: xlfan@nwpu.edu.cn
Cite this article:

FAN Xiao-Li, RAN Run-Xin, ZHANG Chao, YANG Yong-Liang. Density Functional Theory Study on the Adsorption of Dodecylthiol on Au(111) Surface. Acta Phys. Chim. Sin., 2013, 29(09): 1907-1915.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201307022     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I09/1907

(1) Ulman, A. Chem. Rev. 1996, 96, 1533. doi: 10.1021/cr9502357
(2) Schreiber, F. Prog. Surf. Sci. 2000, 65, 151. doi: 10.1016/S0079-6816(00)00024-1
(3) Schreiber, F. J. Phys.: Condes. Matter 2004, 16, R881.
(4) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.;Whitesides, G. M. Chem. Rev. 2005, 105, 1103. doi: 10.1021/cr0300789
(5) Nenchev, G.; Diaconescu, B.; Hagelberg, F.; Pohl, K. Phys. Rev. B 2009, 80, 081401. doi: 10.1103/PhysRevB.80.081401
(6) Chen, W. K.; Cao, M. J.; Liu, S. H.; Xu, Y.; Li, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2005, 21, 903. [陈文凯, 曹梅娟, 刘书红,许莹,李奕,李俊篯. 物理化学学报, 2005, 21, 903.] doi: 10.3866/PKU.WHXB20050816
(7) Cao, M. J.; Chen, W. K.; Liu, S. H.; Lu, C. H.; Xu, Y.; Li, J. Q.Chin. J. Catal. 2006, 27, 223. [曹梅娟, 陈文凯,刘书红, 陆春海,许莹,李俊篯.催化学报, 2006, 27, 223.]
(8) Cao, M. J.; Chen, W. K.; Liu, S. H.; Xu, Y.; Li, J. Q. Acta Phys. -Chim. Sin. 2006, 22, 11. [曹梅娟, 陈文凯,刘书红,许莹,李俊篯. 物理化学学报, 2006, 22, 11.] doi: 10.3866/PKU.WHXB20060103
(9) Li, B.; Zeng, C. G.; Li, Q. X.; Yang, J. L.; Hou, J. G.; Zhu, Q. S.J. Chin. Electr. Microsc. Soc. 2003, 22, 189. [李斌,曾长淦,李群祥, 杨金龙, 侯建国, 朱清时. 电子显微学报, 2003, 22,189.]
(10) Yourdshahyan, Y.; Zhang, H. K.; Rappe, A. M. Phys. Rev. B2001, 63, 081405. doi: 10.1103/PhysRevB.63.081405
(11) Vericat, C.; Vela, M. E.; Salvarezza, R. C. Phys. Chem. Chem. Phys. 2005, 7, 3258. doi: 10.1039/b505903h
(12) Maksymovych, P.; Yates, J. T. J. Am. Chem. Soc. 2006, 128,10642. doi: 10.1021/ja062006f
(13) Maksymovych, P.; Sorescu, D. C.; Yates, J. T. J. Phys. Chem. B2006, 110, 21161. doi: 10.1021/jp0625964
(14) Maksymovych, P.; Vocnyy, O.; Dougherty, D. B.; Sorescu, D. C.;Yates, J. T. Pro. Surf. Sci. 2010, 85, 206. doi: 10.1016/j.progsurf.2010.05.001
(15) Vericat, C.; Vela, M. E.; Benitez, G.; Carro, P.; Salvarezza, R. C.Chem. Soc. Rev. 2010, 39, 1805. doi: 10.1039/b907301a
(16) Min, J. X.; Fan, X. L.; Cheng, Q. Z.; Chi, Q. Acta Chim. Sin.2011, 69, 789. [闵家祥, 范晓丽,程千忠,池琼.化学学报,2011, 69, 789.]
(17) Carro, P.; Torres, D.; Diaz, R.; Salvarezza, R. C.; Lllas, F.J. Phys. Chem. Lett. 2012, 3, 2159. doi: 10.1021/jz300712g
(18) Li, B.; Zeng, C. G.; Li, Q. X.; Wang, B.; Yuan, L. F.; Wang, H.Q.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. J. Phys. Chem. B 2003,107, 972. doi: 10.1021/jp0261861
(19) Wang, J. G.; Selloni, A. J. Phys. Chem. C 2007, 111, 12149. doi: 10.1021/jp0745891
(20) Nakayz, M.; Shikishima, M.; Shibuta, M.; Hirata, N.; Eguchi,T.; Nakajima, A. ACS Nano 2012, 6, 8728. doi: 10.1021/nn302405r
(21) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
(22) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
(23) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558
(24) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
(25) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.doi: 10.1103/PhysRevB.54.11169
(26) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.doi: 10.1016/0927-0256(96)00008-0
(27) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
(28) Blochl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
(29) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996,77, 3865. doi: 10.1103/PhysRevLett.77.3865
(30) Nara, J.; Higai, S.; Morikawa, Y.; Ohno, T. J. Chem. Phys. 2004,120, 6705. doi: 10.1063/1.1651064
(31) Fan, X. L.; Chi, Q.; Liu, C.; Lau, W. J. Phys. Chem. C 2012,116, 1001.
(32) Lustemberg, P. G.; Martiarena, M. L.; Martínez, A. E.;Busnengo, H. F. Langmuir 2008, 24, 3274. doi: 10.1021/la703306t
(33) Fan, X. L.; Zhang, C.; Liu, Y.; Lau, W. M. J. Phys. Chem. C2012, 116, 19909. doi: 10.1021/jp306812v
(34) Maksymovych, P.; Yates, J. T. J. Am. Chem. Soc. 2008, 130,7518. doi: 10.1021/ja800577w
(35) Rajaraman, G.; Caneschi, A.; Gatteschi, D.; Totti, F. Phys. Chem. Chem. Phys. 2011, 13, 3886. doi: 10.1039/c0cp02042g
(36) Tielens, F.; Santos, E. J. Phys. Chem. C 2010, 114, 9444.
(37) Gottschalck, J.; Hammer, B. J. Chem. Phys. 2002, 116, 784.
(38) Henkelman, G.; Arnaldsson, A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354. doi: 10.1016/j.commatsci.2005.04.010

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[7] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[8] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[9] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[10] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[11] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[12] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. Chim. Sin., 2017, 33(3): 530-538.
[13] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Phys. Chim. Sin., 2017, 33(3): 548-553.
[14] JING Tao, DAI Ying. Development of Solid Solution Photocatalytic Materials[J]. Acta Phys. Chim. Sin., 2017, 33(2): 295-304.
[15] LI Gui-Xia, JIANG Yong-Chao, LI Peng, PAN Wei, LI Yong-Ping, LIU Yun-Jie. Helium Separation Performance of the Rhombic-Graphyne Monolayer Membrane: Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2219-2226.