Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (09): 1916-1922    DOI: 10.3866/PKU.WHXB201307101
Adsorption and Decarbonylation Reaction of Furfural on Pt(111) Surface
NI Zhe-Ming, XIA Ming-Yu, SHI Wei, QIAN Ping-Ping
Laboratory of Advanced Catalytic Materials, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, P. R. China
Download:   PDF(1924KB) Export: BibTeX | EndNote (RIS)      


The reaction mechanismof furan formation during decarbonylation of furfural on the Pt(111) plane was investigated by density functional theory generalized gradient approximation calculations with the slab model. The adsorption energy of furfural was calculated to determine preferred adsorption sites on the Pt(111) plane. The revealed possible mechanisms for the decarbonylation of furfural on the Pt(111) plane were studied. The results showed that a furfural molecule loses 0.765 electrons after adsorption on the Pt(111) surface. The d orbitals of the metal surface interact strongly with the π bonds of the furfural ring. This reduced the aromaticity of the furfural ring and the Catoms showed characteristics consistent with sp3 hybridization. The molecular plane of the adsorbate was distorted, and corresponding changes of bond lengths were found. The C―H(O) bonds and―CHO of furfural tilted away from the Pt surface. The calculations showthat furan was a possible product of the decarbonylation reaction. We then searched the transition states (TSs) and reaction potential energy surfaces with the linear and quadratic synchronous transit (LST/QST) complete search. By comparing energy barriers, we obtained the optimal path, which involved furfural forming an acyl intermediate by loss of the Hatom from the branched chain rather than direct decarburization. Furan was then formed by decarburization and hydrogenation of the acyl intermediate. The calculated barrier for the rate-determining step(C4H3O)CO*+*→C4H3O*+ CO* (* is adsorption site) is 127.65 kJ·mol-1.

Key wordsPt(111) surface      Density functional theory      Adsorption      Furfural      Decarbonylation reaction     
Received: 26 March 2013      Published: 10 July 2013
MSC2000:  O641  
Corresponding Authors: NI Zhe-Ming     E-mail:
Cite this article:

NI Zhe-Ming, XIA Ming-Yu, SHI Wei, QIAN Ping-Ping. Adsorption and Decarbonylation Reaction of Furfural on Pt(111) Surface. Acta Phys. Chim. Sin., 2013, 29(09): 1916-1922.

URL:     OR

(1) Schroeder, W. D.; Fontenot, C. J.; Schrader, G. L. J. Catal.2001, 203, 382. doi: 10.1006/jcat.2001.3333
(2) Cicmanec, P.; Syslova, K.; Tichy, J. Top. Catal. 2007, 45, 1.doi: 10.1007/s11244-007-0230-y
(3) Wildberger, M. D.; Mallat, T.; Gobel, U.; Baiker, A. Appl. Catal.1998, 168, 69. doi: 10.1016/S0926-860X(97)00345-1
(4) Liu, J. Y.; Guo, X. L.; Wang, X. T. Catalyst for Producing FuranfromFurfural Decarbonylation. CN Patent 10 142 2738, 2009-05-06. [刘金廷, 郭新亮,王香婷.一种高效糠醛脱羰制呋喃催化剂的制备: 中国, 10 142 2738[P]. 2009-05-06]
(5) Zhang, L.; Yu, L. Y. Catalyst Useful for Producing Furan byFurfural Liquid Phase Ddecarbonylation. CN Patent 10 2000569.A, 2011-04-06. [张龙,于落瀛. 一种糠醛液相脱羰生产呋喃用催化剂及制备方法: 中国, 10 200 0569.A[P]. 2011-04-06]
(6) Grandmaison, J. L.; Chantal, P. D.; Kaliaguine, S. C. Fuel 1990,69, 1058. doi: 10.1016/0016-2361(90)90020-Q
(7) Sitthisa, S.; Resasco, D. Catal. Lett. 2011, 141, 784. doi: 10.1007/s10562-011-0581-7
(8) Yu, L. Y.; Ding, L. W.; Zhang, L. Precious Metals 2011, 32 (3),69. [于落瀛, 丁立微,张龙.贵金属, 2011, 32 (3), 69.
(9) Zhang, W.; Zhu, Y. L.; Niu, S. S.; Li, Y. W. J. Mol. Catal. AChem.2011, 335, 71. doi: 10.1016/j.molcata.2010.11.016
(10) Xue, L.; Liu, S. W.; Xu, X. L. Chin. J. Mol. Catal. 2002, 16 (2),116. [薛莉,刘淑文, 徐贤伦. 分子催化, 2002, 16 (2), 116.]
(11) Vladimir, V. P.; Nathan, M.; Kwangjin, A.; Selim, A.; Gabor, A.S. Nano Lett. 2012, 12, 5196. doi: 10.1021/nl3023127
(12) Kwangjin, A.; Nathan, M.; Griffin, K., Vladimir, V. P.; Robert,L. B.; Gabor, A. S. J. Colloid Interface Sci. 2013, 392, 122. doi: 10.1016/j.jcis.2012.10.029
(13) Zheng, H. Y.; Zhu, Y. L.; Gong, L. Fine Specialty Chem. 2005,13 (12), 7. [郑洪岩, 朱玉雷,龚亮,精细与专用化学品,2005, 13 (12), 7.]
(14) Sitthisa, S.; Sooknoi, T.; Ma, Y. G.; Balbuena, P. B.; Resasco, D.E. J. Catal. 2011, 277, 1. doi: 10.1016/j.jcat.2010.10.005
(15) Sitthisa, S.; Pham, T.; Prasomsri, T.; Sooknoi, T.; Mallinson, R.G.; Resasco, D. E. J. Catal. 2011, 280, 17. doi: 10.1016/j.jcat.2011.02.006
(16) Sitthisa, S.; Wei, A.; Resasco, D. E. J. Catal. 2011, 284, 90. doi: 10.1016/j.jcat.2011.09.005
(17) Simon, H. P.; Medlin, J. W. ACS Catal. 2011, 1, 127.
(18) Vorotnikov, V.; Mpourmpakis, G.; Vlachos, D. G. ACS Catal.2012, 2, 2496. doi: 10.1021/cs300395a
(19) Xia, M. Y.; Cao, X. X.; Ni, Z. M.; Shi, W.; Fu, X. W. Chin. J. Catal. 2012, 33, 1000. [夏明玉,曹晓霞, 倪哲明,施炜,付晓微.催化学报, 2012, 33, 1000.]
(20) Delley, B. J. Chem. Phys. 2000, 113 (18), 7756. doi: 10.1063/1.1316015
(21) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992,46, 6671. doi: 10.1103/PhysRevB.46.6671
(22) White, J. A.; Bird, D. M.; Payne, M. C.; Stich, I. Phys. Rev. Lett.1994, 73, 1404. doi: 10.1103/PhysRevLett.73.1404
(23) Mai, S. W.; Zhou, G. D.; Li, W. J. Advanced Inorganic Structural Chemistry; Peking University Press: Beijing, 2001;pp 302-303. [麦松威, 周公度,李伟基. 高等无机结构化学.北京:北京大学出版社, 2001: 302-303.]
(24) Mao, J. H.; Ni, Z. M.; Pan, G. X.; Xu, Q. Acta Phys. -Chim. Sin.2008, 24, 2059. [毛江洪, 倪哲明, 潘国祥,胥倩.物理化学学报, 2008, 24, 2059.] doi: 10.3866/PKU.WHXB20081121
(25) Ni, Z. M.; Mao, J. H.; Pan, G. X.; Xu, Q.; Li, X. N. Acta. Phys. -Chim. Sin. 2009, 25, 876. [倪哲明, 毛江洪, 潘国祥,胥倩,李小年.物理化学学报, 2009, 25, 876.] doi: 10.3866/PKU.WHXB20090507
(26) Liu, X. M.; Ni, Z. M.; Yao, P.; Xu, Q.; Mao, J. H.; Wang, Q. Q.Acta Phys. -Chim. Sin. 2010, 26, 1599. [刘晓明, 倪哲明,姚萍,胥倩,毛江洪,王巧巧.物理化学学报, 2010, 26,1599.] doi: 10.3866/PKU.WHXB20100625
(27) Govind, N.; Petersen, M.; Fitzgerald, G.; Dominic, K. S.;Andzelm, J. Comput. Mater. Sci. 2003, 28, 250. doi: 10.1016/S0927-0256(03)00111-3
(28) Chen, Z. H.; Ding, K. N.; Xu, X. L.; Li, J. Q. Chin. J. Catal.2010, 31, 49. [陈展虹, 丁开宁, 徐香兰,李俊篯. 催化学报,2010, 31, 49.]

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. Chim. Sin., 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[5] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[6] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1846-1854.
[7] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[8] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[9] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1898-1904.
[10] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[11] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1236-1241.
[12] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[13] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[14] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[15] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.