Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (10): 2180-2186    DOI: 10.3866/PKU.WHXB201307152
Ab Initio Molecular Dynamics Simulations of Structural Properties of Be2+ in Water, Methanol and Ethanol
ZENG Yong-Ping, SHI Rong, YANG Zheng-Hua
College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu Province, P. R. China
Download:   PDF(1489KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Car-Parrinello molecular dynamics simulations are performed on Be2+ ion in water, methanol, and ethanol to study their structural properties and then compared with experimental and theoretical data. Excellent agreement is obtained with existing experimental data for the structure of the first solvation shell around the Be2+ ion. Radial distribution functions, coordination number, and angular distributions are used to examine the solvation structure in the first solvation shell of Be2+. Be2+ has a very well-defined first solvation shell of four solvent molecules with a tetrahedral symmetry. The solvation shells of Be2+ in water, methanol and ethanol have well-defined, long-lived tetrahedral structures. Exchange of solvent molecules between the first and second solvation shells is not observed. Spatial distribution function (SDF) results show that the maximum of the Be2+ distribution lies along the same direction as that of acceptor of hydrogen-bonded solvent molecules.

Key wordsBe2+      Water      Methanol      Ethanol      CPMD      Microstructure     
Received: 22 May 2013      Published: 15 July 2013
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (20806064) and Natural Science Foundation of Jiangsu Province, China (BK20131227).

Corresponding Authors: ZENG Yong-Ping     E-mail:
Cite this article:

ZENG Yong-Ping, SHI Rong, YANG Zheng-Hua. Ab Initio Molecular Dynamics Simulations of Structural Properties of Be2+ in Water, Methanol and Ethanol. Acta Phys. Chim. Sin., 2013, 29(10): 2180-2186.

URL:     OR

(1) Rempe, S. B.; Pratt, L. R.; Hummer, G.; Kress, J. D.; Martin, R.L.; Redondo, A. J. Am. Chem. Soc. 2000, 122, 966.
(2) Liu, Y.; Wang, F. F.; Yu, C. Y.; Liu, C.; Gong, L. D.; Yang, Z. Z.Acta Phys. -Chim. Sin. 2011, 27, 379. [刘燕,王芳芳,于春阳,刘翠,宫利东, 杨忠志.物理化学学报, 2011, 27,379.] doi: 10.3866/PKU.WHXB20110233
(3) Rudolph, W. W.; Fischer, D.; Irmer, G.; Pye, C. C. Dalton Transactions 2009, 33, 6513.
(4) Lyubartsev, A. P.; Laasonen, K.; Laaksonen, A. J. Chem. Phys.2001, 114, 3120. doi: 10.1063/1.1342815
(5) Ayala, R.; Martinez, J. M.; Pappalardo, R. R.; Muňoz-Paez, A.;Marcos, E. S. J. Phys. Chem. B 2008, 112, 5416. doi: 10.1021/jp076032r
(6) Jiao, D.; King, C.; Grossfield, A.; Darden, T. A.; Ren, P. J. Phys. Chem. B 2006, 110, 18553. doi: 10.1021/jp062230r
(7) Spangberg, D.; Hermansson, K. Chem. Phys. 2004, 300, 165.
(8) Ansell, S.; Barnes, A. C.; Mason, P. E.; Neilson, G. W.; Ramos,B. S. Biophysical Chemistry 2006, 124, 171. doi: 10.1016/j.bpc.2006.04.018
(9) Megyes, T.; Radnai, T.; Grósz, T.; Pálinkás, G. Journal of Molecular Liquids 2002, 101, 3. doi: 10.1016/S0167-7322(02)00098-3
(10) Faralli, C.; Pagliai, M.; Cardini, G.; Schettino, V. J. Phys. Chem. B 2006, 110, 14923.
(11) Roux, B. Curr. Opin. Struct. Biol. 2002, 12, 182. doi: 10.1016/S0959-440X(02)00307-X
(12) Herdman, G. J.; Salmon, P. S. J. Am. Chem. Soc. 1991, 113,2930. doi: 10.1021/ja00008a022
(13) Guillot, B.; Marteau, P.; Obriot, J. J. Chem. Phys. 1990, 93,6148. doi: 10.1063/1.458986
(14) Cory, C.; Pye, W. W.; Rudolph, J. Phys. Chem. 1998, 102,9933. doi: 10.1021/jp982709m
(15) Yu, X. C.; Lin, K.; Hu, N. Y.; Zhou, X. G.; Liu, S. L. Acta Phys. -Chim. Sin. 2010, 26, 2473. [余小春,林珂,胡乃银,周晓国, 刘世林.物理化学学报, 2010, 26, 2473.] doi: 10.3866/PKU.WHXB20100922
(16) Omta, A. W.; Kropman, M. F.; Woutersen, S. Bakker, H. J.Science 2003, 301, 347. doi: 10.1126/science.1084801
(17) Rode, B.; Hofer, T.; Randolf, B.; Schwenk, C.; Xenides, D.;Vchirawongkwin, V. Theor. Chem. Acc. 2006, 115, 77. doi: 10.1007/s00214-005-0049-1
(18) Yu, H. B.;Whitfield, T. W.; Harder, E.; Lamoureux, G.;Vorobyov, I.; Anisimov, V. M.; MacKerell, A. D.; Roux, B.J. Chem. Theory Comput. 2010, 6, 774. doi: 10.1021/ct900576a
(19) Chowdhuri, S.; Chandra, A. J. Chem. Phys. 2006, 124,084507. doi: 10.1063/1.2172598
(20) Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54,1703. doi: 10.1103/PhysRevB.54.1703
(21) Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993. doi: 10.1103/PhysRevB.43.1993
(22) Kleinman, L.; Bylander, D. M. Phys. Rev. Lett. 1982, 48,1425. doi: 10.1103/PhysRevLett.48.1425
(23) Vuilleumier, R.; Sprik, M. J. Chem. Phys. 2001, 115, 3454. doi: 10.1063/1.1388901
(24) Pagliai, M.; Cardini, G.; Righini, R.; Schettino, V. J. Chem. Phys. 2003, 119, 6655. doi: 10.1063/1.1605093
(25) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760
(26) Kaminski, G.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L.J. Phys. Chem. B 2001, 105, 6474. doi: 10.1021/jp003919d
(27) Zeng, Y. P.; Zhu, X. M.; Yang, Z. H. Acta Phys. -Chim. Sin.2011, 27, 2779. [曾勇平, 朱小敏, 杨正华.物理化学学报,2011, 27, 2779.] doi: 10.3866/PKU.WHXB20112779
(28) Yamaguchi, T.; Ohtaki, H.; Spohr, E.; Palinkas, G.; Heinzinger,K.; Probst, M. M. Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences 1986, 41, 1175.
(29) Divjakovic, V.; Endenharter, A.; Nowacki, W.; Ribar, B. Z. Kristallogr. 1976, 144, 314. doi: 10.1524/zkri.1976.144.1-6.314
(30) Akitt, J. W.; Duncan, R. H. J. Chem. Soc. Faraday Trans. 1980,76, 2212. doi: 10.1039/f19807602212
(31) Gnanakaran, S.; Scott, B.; McCleskey, T. M.; Garcia, A. E.J. Phys. Chem. B 2008, 112, 2958. doi: 10.1021/jp076001w
(32) Marx, D.; Sprik, M.; Parrinello, M. Chem. Phys. Lett. 1997,273, 360. doi: 10.1016/S0009-2614(97)00618-0
(33) Yang, Z.; Li, X. J. Chem. Phys. 2005, 123, 094507. doi: 10.1063/1.2000245

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Phys. Chim. Sin., 2018, 34(3): 247-255.
[2] CUI Peng, LIU Hai, YU Xue-Min, XIA Qing, LI Qing-Song. Measurement and Correlation of Liquid-Liquid Equilibrium Data for the Water+Cyclohexanone+Methyl Isobutyl Ketone Ternary System[J]. Acta Phys. Chim. Sin., 2018, 34(1): 65-72.
[3] HUANG Xiang-Feng, LIU Wan-Qi, XIONG Yong-Jiao, PENG Kai-Ming, LIU Jia, LU Li-Jun. Application and Effect of Functional Magnetic Nanoparticles in Emulsion Preparation and Demulsification[J]. Acta Phys. Chim. Sin., 2018, 34(1): 49-64.
[4] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[5] NING Hong-Yan, YANG Qi-Lei, YANG Xiao, LI Ying-Xia, SONG Zhao-Yu, LU Yi-Ren, ZHANG Li-Hong, LIU Yuan. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1865-1874.
[6] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[7] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[8] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. Chim. Sin., 2017, 33(5): 869-885.
[9] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[10] HUANG Ming-Hui, JIN Bi-Yao, ZHAO Lian-Hua, SUN Shi-Gang. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(3): 563-572.
[11] SUN Yi-Ran, YU Fei, MA Jie. Research Progress of Nanoconfined Water[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2173-2183.
[12] YE Bin, ZHANG Jian, GAO Cai, TANG Jing-Chun. Experimental and Theoretical Analysis of 1H NMR on Double-Carbon Alcohol Aqueous Solutions[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1978-1988.
[13] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. Chim. Sin., 2017, 33(1): 198-210.
[14] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[15] LIU Shan-Shan, JI Shan, CHEN Qi-Bin, PENG Chang-Jun, LIU Hong-Lai. Surface Patterning and Force-Induced Reversible Structural Transformation of a PVP-Chol Supramolecular Polymer Brush[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2318-2326.