Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (10): 2207-2214    DOI: 10.3866/PKU.WHXB201307191
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Molecular Simulation on Hydrogen Storage Capacities of Porous Metal Organic Frameworks
WU Xuan-Jun, ZHENG Ji, LI Jiang, CAI Wei-Quan
School of Chemical Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
Download:   PDF(2039KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The adsorption equilibriumproperties of H2 molecules in various metal-organic frameworks (MOFs) including IRMOF-61, IRMOF-62, and IRMOF-1 were studied using the grand canonical Monte Carlo (GCMC) simulation method with the optimized parameters obtained using the DREIDING force field. The calculated parameters could exactly reproduce the adsorption isotherms of H2 molecules in IRMOF-62. However, they may underestimate the adsorption isothermof H2 molecules in IRMOF-61 at lowpressure. The H2 storage capacities of IRMOF-61 and IRMOF-62 with interpenetrating frameworks were not significantly higher than that of IRMOF-1 at roomtemperature. H2 molecules were preferentially adsorbed near Zn4O units, which were located close to the benzene rings, according to the probability density distribution of H2 molecules in the above MOFs under adsorption equilibriumconditions at 77 K, 100 kPa, and 3.0 MPa. For the MOFs with interpenetrating frameworks, the area with preferential adsorption sites for H2 molecules is smaller and more scattered than the MOF without because of their smaller cavity sizes. The organic linker should be of appropriate length to promote the formation of an interpenetrating framework, which can enhance the interaction between the framework and H2 molecules, and thus improve H2 storage capacity. If the organic linker is too long, it will decrease the adsorption capacity of the MOF for H2 because more corners unable to adsorb H2 are formed.



Key wordsMOFs      Porous material      GCMC simulation      Hydrogen storage      Isothermal adsorption     
Received: 20 May 2013      Published: 19 July 2013
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (51142002, 51272201) and Fundamental Research Funds for the Central Universities, China (2012142, 2013-II-014).

Corresponding Authors: CAI Wei-Quan     E-mail: wqcai@home.ipe.ac.cn
Cite this article:

WU Xuan-Jun, ZHENG Ji, LI Jiang, CAI Wei-Quan. Molecular Simulation on Hydrogen Storage Capacities of Porous Metal Organic Frameworks. Acta Phys. -Chim. Sin., 2013, 29(10): 2207-2214.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201307191     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I10/2207

(1) Rowsell, J. L. C.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128,1304. doi: 10.1021/ja056639q
(2) Wong-Foy, A. G.; Matzger, A. J.; Yagh, O. M. J. Am. Chem. Soc. 2006, 128, 3494. doi: 10.1021/ja058213h
(3) Nijem, N.; Veyan, J. F.; Kong, L. Z.; Li, K. H.; Pramanik, S.;Zhao, Y. G.; Li, J.; Langreth, D.; Chabal, Y. J. J. Am. Chem. Soc.2010, 132, 1654. doi: 10.1021/ja908817n
(4) Yang, J.; Sudik, A.; Wolverton, C. J. Phys. Chem.C 2007, 111,19134. doi: 10.1021/jp076434z
(5) Skipper, C. V. J.; Hoang, T. K. A.; Antonelli, D. M.;Kaltsoyannis, N. Chem. -Eur. J. 2012, 18, 1750. doi: 10.1002/chem.v18.6
(6) Lu, H. L.; Wang, J. W.; Liu, C. L.; Ratcliffe, C. I.; Becker, U.;Kumar, R.; Ripmeester, J. J. Am. Chem. Soc. 2012, 134, 9160.doi: 10.1021/ja303222u
(7) Senadheera, L.; Conradi, M. S. J. Phys. Chem. B 2007, 111,12097. doi: 10.1021/jp074517+
(8) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.;O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. doi: 10.1126/science.1067208
(9) Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.;Yaghi, O. M. Science 2005, 309, 1350. doi: 10.1126/science.1113247
(10) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999,402, 276. doi: 10.1038/46248
(11) Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A. J. Am. Chem. Soc. 2008, 130, 11580. doi: 10.1021/ja803247y
(12) Lan, J. H.; Cao, D. P.; Wang, W. C. J. Phys. Chem. C 2010, 114,3108. doi: 10.1021/jp9106525
(13) Sun, Y. X.; Ben, T.; Wang, L.; Qiu, S. L.; Sun, H. J. Phys. Chem. Lett. 2010, 1, 2753. doi: 10.1021/jz100894u
(14) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.;Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. T. Angew. Chem. Int. Edit. 2009, 48, 9457. doi: 10.1002/anie.200904637
(15) Chae, H. K.; Siberio-Pérez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.;Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Nature 2004, 427,523.
(16) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.;O'Keefee, M.; Yaghi, O. M. Science 2003, 300, 1127. doi: 10.1126/science.1083440
(17) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi,E.; Yazaydin, A. Ö.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi,O. M. Science 2010, 329, 424. doi: 10.1126/science.1192160
(18) Frost, H.; Düren, T.; Snurr, R. Q. J. Phys. Chem. B 2006, 110,9565. doi: 10.1021/jp060433+
(19) Frost, H.; Snurr, R. Q. J. Phys. Chem. C 2007, 111, 18794. doi: 10.1021/jp076657p
(20) Dalach, P.; Frost, H.; Snurr, R. Q.; Ellis, D. E. J. Phys. Chem. C2008, 112, 9278. doi: 10.1021/j9801008d
(21) Düren, T.; Millange, F.; Ferey, G.;Walton, K. S.; Snurr, R. Q.J. Phys. Chem. C 2007, 111, 15350. doi: 10.1021/jp074723h
(22) Bae, Y. S.; Snurr, R. Q. Microporous Mesoporous Mat. 2010,132, 300. doi: 10.1016/j.micromeso.2010.02.023
(23) Bae, Y. S.; Snurr, R. Q. Microporous Mesoporous Mat. 2010,135, 178. doi: 10.1016/j.micromeso.2010.07.007
(24) Getman, R. B.; Miller, J. H.; Wang, K.; Snurr, R. Q. J. Phys. Chem. C 2011, 115, 2066. doi: 10.1021/jp1094068
(25) Tranchemontagne, D. J.; Park, K. S.; Furukawa, H.; Eckert, J.;Knobler, C. B.; Yaghi, O. M. J. Phys. Chem. C 2012, 116,13143. doi: 10.1021/jp302356q
(26) Pérez-Pellitero, J.; Amrouche, H.; Siperstein, F. R.; Pirngruber,G.; Nieto-Draghi, C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N. Chem. -Eur. J. 2010, 16, 1560.doi: 10.1002/chem.v16:5
(27) Pantatosaki, E.; Pazzona, F. G.; Megariotis, G.; Papadopoulos,G. K. J. Phys. Chem. B 2010, 114, 2493. doi: 10.1021/jp911477a
(28) Gupta, A.; Chempath, S.; Sanborn, M. J.; Clark, L. A.; Snurr, R.Q. Mol. Simul. 2003, 29, 29. doi: 10.1080/0892702031000065719
(29) The Cambridge Crystallographic Data Centre. http://www.ccdc.cam.ac.uk (accessed March 2013).
(30) Buch, V. J. Chem. Phys. 1994, 100, 7610. doi: 10.1063/1.466854
(31) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fund. 1976, 15,59. doi: 10.1021/i160057a011
(32) Myers, A. L.; Monson, P. A. Langmuir 2002, 18, 10261. doi: 10.1021/la026399h
(33) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996,14,33. doi: 10.1016/0263-7855(96)00018-5
(34) Wu, X. J.; Yang, X.; Song, J.; Cai, W. Q. Acta Chim. Sin. 2012,70, 2518. [吴选军,杨旭,宋杰,蔡卫权. 化学学报, 2012,70, 2518.] doi: 10.6023/A12110858
(35) Han, S. S.; Choi, S. H.; Goddard, W. A. J. Phys. Chem. C 2011,115, 3507. doi: 10.1021/jp200321y

[1] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[2] . Statistic Thermodynamic Model of Hydrogen Absorption on Metal Powders[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1108-1113.
[3] Lan-Yi WANG,Xue-Hua YU,Zhen ZHAO. Synthesis of Inorganic Porous Materials and Their Applications in the Field of Environmental Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2359-2376.
[4] Lu-Lu LI,Shuai LIU,Qin ZHANG,Nan-Tao HU,Liang-Ming WEI,Zhi YANG,Hao WEI. Advances in Covalent Organic Frameworks[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1960-1977.
[5] Yi-Fen GAO,Gui-Lin ZHUANG,Jia-Qi BAI,Xing ZHONG,Jian-Guo WANG. Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (Ⅱ)-Based Metal-Organic Framework[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 242-248.
[6] Yue WANG,Quan JIANG,Jie-Kun SHANG,Jie XU,Yong-Xin LI. Advances in the Synthesis of Mesoporous Carbon Nitride Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1913-1928.
[7] Chang-Shui HUANG,Yu-Liang LI. Structure of 2D Graphdiyne and Its Application in Energy Fields[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1314-1329.
[8] Shen-Dong XU,Liang FANG,Xiao-Li DING. Effect of Structural Factors on the Hydrogen Storage Capacity of Nonstoichiometric TiMnx Alloys[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 780-786.
[9] Dan LIU,Yan-Yan HU,Chao ZENG,De-Yu QU. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2826-2840.
[10] Long-Hui. NIE,Qiao. TAN,Wei. ZHU,Qi. WEI,Zhi-Kui. LIN. Fast Adsorption Removal of Congo Red on Hierarchically Porous γ-Al2O3 Hollow Microspheres Prepared by Microwave-Assisted Hydrothermal Method[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1815-1822.
[11] LI Zhe-Qi, WANG Te-Hua, LI Xiu-Yuan, ZHANG Ya-Qin, JI Min. Preparation and Catalytic Performances of a Three-Dimensionally Ordered Macroporous MgFe0.1Al1.9O4 Catalyst for Ethylbenzene Oxydehydrogenation with CO2[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 743-749.
[12] LIANG Chu, LIANG Sheng, XIA Yang, HUANG Hui, GAN Yong-Ping, TAO Xin-Yong, ZHANG Wen-Kui. Progress in the Mg(NH2)2-2LiH Material for Hydrogen Storage[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 627-635.
[13] LI Jian-Mei, LIU Jian, REN Li-Wei, LIU Qing-Long, ZHAO Zhen, WEI Yue-Chang, DUAN Ai-Jun, JIANG Gui-Yuan. Selective Oxidation of Ethane to Aldehydes over Potassium-Promoted SBA-15-Supported Molybdenum Oxide Catalysts[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1736-1744.
[14] WANG Jia-Sheng, HAN Shu-Min, LI Yuan, SHEN Na, ZHANG Wei. Hydriding/Dehydriding Properties of an MgH2+20%(w) MgTiO3 Composite[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2323-2327.
[15] WU Xuan-Jun, ZHAO Peng, FANG Ji-Min, WANG Jie, LIU Bao-Shun, CAI Wei-Quan. Simulation on the Hydrogen Storage Properties of New Doping Porous Aromatic Frameworks[J]. Acta Phys. -Chim. Sin., 2014, 30(11): 2043-2054.