Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2013,Vol.29>> Issue(10)>> 2162-2172     doi: 10.3866/PKU.WHXB201308152         中文摘要
THERMODYNAMICS, KINETICS, AND STRUCTURAL CHEMISTRY
Synthesis and Characterization of a Cu(I) Complex of Dipyrido[3,2-a:2’,3’-c]-7-aza-phenazine and Its Interaction with DNA
GAO Yun-Yan1, CAO Lu1, OU Zhi-Ze1, CHEN Chen1, LI Yi2, WANG Xue-Song2
1 Key Laboratory of Space Applied Physics and Chemistry of the Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, P. R. China;
2 Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download: PDF (1485KB) Export: BibTeX | EndNote (RIS)

A 1,10-phenanthroline dipyrido[3,2-a:2',3'-c]-7-aza-phenazine derivative (dpapz) and its Cu(I) complex [Cu(dpapz)2]PF6 are prepared and characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FTIR), and high resolution electrospray ionization mass spectrometry (HR ESI-MS). The interactions of dpapz and [Cu(dpapz)2]PF6 with calf thymus DNA (CT DNA) are studied by ultraviolet-visible spectroscopy (UV-Vis), fluorescence spectroscopy, DNA melting temperature, and cyclic voltammetry. When the ligand dpapz interacts with DNA, there is no red shift of the absorption peak and only a small hypochromic (<30%) effect on the absorption spectra. In addition, the interaction leads to a slight increase in the melting temperature of DNA (ΔTm=7.8 ℃). All the results indicate that groove binding is the primary interaction of dpapz with CT DNA. However, when [Cu(dpapz)2]PF6 interacts with DNA, there is a red shift of the absorption peak (2-3 nm), a large hypochromic effect on the absorption spectrum (>50%), and a significant increase in the melting temperature of DNA (ΔTm=11.1 ℃), indicating that [Cu(dpapz)2]PF6 electrostatically associates with DNA in a partial intercalation manner. The complexes of dpapz and [Cu(dpapz)2]PF6 with DNA are further confirmed by ethidium bromide (EB) fluorescence assays and cyclic voltammetry. The association constants for dpapz and [Cu(dpapz)2]PF6 with CT DNA are 2.88×105 and 5.32×105 mol·L-1, respectively. The yield of singlet oxygen produced by [Cu(dpapz)2]PF6 is similar to that of dpapz, while the yield of superoxide anion radical for [Cu(dpapz)2]PF6 is lower than that of dpapz. Active oxygen quencher experiments indicate that singlet oxygen, superoxide anion radicals, and hydrogen radicals all take part in the photocleavage of DNA by [Cu(dpapz)2]PF6 and dpapz. However, [Cu(dpapz)2]PF6 causes more photodamage of plasmid DNA than does dpapz, most likely because of its higher affinity for DNA.



Keywords: Phenanthroline derivative   Cu(I) complex   Photocleavage of DNA   Active oxygen   Mode of DNAinteraction  
Received: 2013-06-20 Accepted: 2013-08-15 Publication Date (Web): 2013-08-15
Corresponding Authors: OU Zhi-Ze, GAO Yun-Yan Email: ouzhize@nwpu.edu.cn;gaoyunyan@nwpu.edu.cn

Fund: The project was supported by the National Natural Science Foundation of China (21073143),"Chunhui Project" fromthe Ministry of Education of China (Z2009-1-71002, Z2009-1-71006), NPU Foundation for Fundamental Research, China (JC200822, JC20100239), and NPU Foundation for Graduate Innovation, China.

Cite this article: GAO Yun-Yan, CAO Lu, OU Zhi-Ze, CHEN Chen, LI Yi, WANG Xue-Song. Synthesis and Characterization of a Cu(I) Complex of Dipyrido[3,2-a:2’,3’-c]-7-aza-phenazine and Its Interaction with DNA[J]. Acta Phys. Chim. Sin., 2013,29 (10): 2162-2172.    doi: 10.3866/PKU.WHXB201308152

(1) Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467. doi: 10.1021/cr980421n
(2) Reedijk, J. Chem. Rev. 1999, 99, 2499. doi: 10.1021/cr980422f
(3) Giaccone, G.; Herbst, R. S.; Manegold, C.; Scagliotti, G.;Rosell, R.; Miller, V. J. Clin. Oncol. 2004, 22, 777. doi: 10.1200/JCO.2004.08.001
(4) Frausto da Silva, J. J. R.; Williams, R. J. P. The Biological Chemistry of the Elements; Clarendon: Oxford, U. K., 1991.
(5) Yoshida, D.; Ikeda, Y.; Nakazawa, S. J. Neurooncol. 1993, 16,109. doi: 10.1007/BF01324697
(6) Coates, R. J.; Weiss, N. S.; Daling, J. R.; Rettmer, R. L.;Warnick, G. R. Cancer Res. 1989, 49, 4353.
(7) Gupta, S. K.; Shukla, V. K.; Vaidya, M. P.; Roy, S. K. J. Surg. Oncol. 1993, 52, 172.
(8) Goswami, T. K.; Roy, M.; Nethaji, M.; Chakravarty, A. R.Organometallics 2009, 28, 1992. doi: 10.1021/om900012b
(9) Lahiri, D.; Bhowmick, T.; Pathak, B.; Shameema, O.; Patra, A.K.; Ramakumar, S.; Chakravarty, A. R. Inorg. Chem. 2009, 48,339. doi: 10.1021/ic800806j
(10) Armitage, B. Chem. Rev. 1998, 98, 1171. doi: 10.1021/cr960428+
(11) Sun, H.; Yu, Z.; Yang, W. Q.; He, W. J.; Guo, Z. J. Chem. J. Chin. Univ. 2011, 32, 437. [孙辉,余臻,杨玮琪, 何卫江,郭子建. 高等学校化学学报, 2011, 32, 437.]
(12) Sathyadevi, P.; Krishnamoorthy, P.; Butorac, R. R.; Cowley, A.H.; Dharmaraj, N. Metallomics 2012, 4, 498. doi: 10.1039/c2mt00004k
(13) Robertazzi, A.; Vargiu, A. V.; Magistrato, A.; Ruggerone, P.;Carloni, P.; de Hoog, P.; Reedijk, J. J. Phys. Chem. B 2009, 113,10881. doi: 10.1021/jp901210g
(14) Sigman, D. Accounts Chem. Res. 1986, 19, 180. doi: 10.1021/ar00126a004
(15) Sathiyaraj, S.; Sampath, K.; Butcher, R. J.; Pallepogu, R.;Jayabalakrishnan, C. Eur. J. Med. Chem. 2013, 64, 81. doi: 10.1016/j.ejmech.2013.03.047
(16) Veal, J. M.; Rill, R. L. Biochemistry 1991, 30, 1132. doi: 10.1021/bi00218a035
(17) Tsiaggalia, M. A.; Andreadou, E. G.; Hatzidimitriou, A. G.;Pantazaki, A. A.; Aslanidis, P. J. Inorg. Biochem. 2013, 121,121. doi: 10.1016/j.jinorgbio.2013.01.001
(18) Pan, C. Q.; Johnson, R. C.; Sigman, D. S. Biochemistry 1996,35, 4326. doi: 10.1021/bi952040z
(19) Xia, S. F.; Lu, X. M. Chem. Bull. 2011, 74, 1069. [夏寺丰, 鲁晓明. 化学通报, 2011, 74, 1069.]
(20) Chen, X.; Gao, F.; Yang, W.; Sun, J.; Zhou, Z.; Ji, L. Inorg. Chim. Acta 2011, 378, 140. doi: 10.1016/j.ica.2011.08.047
(21) Tan, L.; Xiao, Y.; Liu, X.; Zhang, S. Spectrochim. Acta, Part A2009, 73, 858. doi: 10.1016/j.saa.2009.04.021
(22) Wu, B. Y.; Gao, L. H.; Wang, K. Z. Chem. J. Chin. Univ. 2005,26, 1206. [吴宝燕, 高丽华,王科志. 高等学校化学学报,2005, 26, 1206.]
(23) Paw, W.; Eisenberg, R. Inorg. Chem. 1997, 36, 2287. doi: 10.1021/ic9610851
(24) Karlsson, H. J.; Eriksson, M.; Perzon, E.; Akerman, B.; Lincoln,P.; Westman, G. Nucleic Acids Res. 2003, 31, 6227. doi: 10.1093/nar/gkg821
(25) Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.;Goda, Y.; Masumizu, T.; Nagano, T. J. Am. Chem. Soc. 2003,125, 12803. doi: 10.1021/ja0355574
(26) Miyamoto, S.; Martinez, G. R.; Martins, A. P. B.; Medeiros, M.H. G.; Mascio, P. D. J. Am. Chem. Soc. 2003, 125, 4510. doi: 10.1021/ja029262m
(27) Rondelez, Y.; Bertho, G.; Reinaud, O. Angew. Chem. Int. Edit.2002, 41, 1044.
(28) Yang, S. P.; Han, L. J.; Pan, Y.; Wu, Z. M.; He, X. R.; Chen, L.J. Acta Chim. Sin. 2012, 70, 519. [杨树平, 韩立军, 潘燕,吴争鸣, 何欣然, 陈丽娟. 化学学报, 2012, 70, 519.] doi: 10.6023/A1109102
(29) Nishikawa, M.; Nomoto, K.; Kume, S.; Nishihara, H. J. Am. Chem. Soc. 2012, 134, 10543. doi: 10.1021/ja3028873
(30) Ruthkosky, M.; Kelly, C. A.; Castellano, F. N.; Meyer, G. J.Coord. Chem. Rev. 1998, 171, 309. doi: 10.1016/S0010-8545(98)90045-5
(31) Rader, R. A.; McMillin, D. R.; Buckner, M. T.; Matthews, T. G.;Casadonte, D. J.; Lengel, R. K.;Whittaker, S. B.; Darmon, L.M.; Lytle, F. E. J. Am. Chem. Soc. 1981, 103, 5906. doi: 10.1021/ja00409a048
(32) Jin, J.; Xu, X. T.; Cong, S. M.; Li, L.; Zhang, G. N.; Niu, S. Y.Acta Phys. -Chim. Sin. 2012, 28, 2549. [金晶, 徐晓婷,丛盛美,李雷,张广宁, 牛淑云.物理化学学报, 2012, 28, 2549.]doi: 10.3866/PKU.WHXB201207311
(33) Díaz, R.; Reyes, O.; Francois, A.; Leiva, A. M.; Loeb, B.Tetrahedron Lett. 2001, 42, 6463. doi: 10.1016/S0040-4039(01)01289-8
(34) Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.;Turro, N. J.; Barton, J. K. J. Am. Chem. Soc. 1989, 111, 3053.
(35) Waring, M. J. J. Mol. Biol. 1965, 13, 269. doi: 10.1016/S0022-2836(65)80096-1
(36) Deng, H.; Cai, J.; Xu, H.; Zhang, H.; Ji, L. Dalton Trans. 2003,325.
(37) Ivanov, V. I.; Minchenkova, L. E.; Schyolkina, A. K.Biopolymers 1973, 12, 89.
(38) Yin, W. F.; Ou, Z. Z.; Gao, Y. Y.; Hao, P.; Guo, C. L.; Wang, Z.L. Acta Chim. Sin. 2010, 68, 1343. [殷卫峰,欧植泽, 高云燕,郝平,郭创龙,王中丽. 化学学报, 2010, 68, 1343.]
(39) Childs, L. J.; Malina, J.; Rolfsnes, B. E.; Pascu, M.; Prieto, M.J.; Broome, M. J.; Rodger, P. M.; Sletten, E.; Moreno, E. V.;Rodger, A.; Hannon, M. J. Chem. -Eur. J. 2006, 12, 4919.
(40) Han, M.; Duan, Z.; Hao, Q.; Zheng, S.; Wang, K. J. Phys. Chem. C 2007, 111, 16577. doi: 10.1021/jp075194k
(41) Sheng, X.; Guo, X.; Lu, X.; Lu, G.; Shao, Y.; Liu, F.; Xu, Q.Bioconjugate Chem. 2008, 19, 490. doi: 10.1021/bc700322w
(42) Tietze, M.; Beuchle, A.; Lamla, I.; Orth, N.; Dehler, M.;Greiner, G.; Beifuss, U. ChemBioChem 2003, 4, 333. doi: 10.1002/cbic.v4:4
(43) Pellegrin, Y.; Sandroni, M.; Blart, E.; Planchat, A.; Evain, M.;Bera, N. C.; Kayanuma, M.; Sliwa, M.; Rebarz, M.; Poizat, O.;Daniel, C.; Odobel, F. Inorg. Chem. 2011, 50, 11309. doi: 10.1021/ic2006343
(44) Zhou, Y. Z.; Feng, J. N.; Yue, L.; Tu, S. J.; Zhu, H. J. Acta Chim. Sin. 2009, 67, 1297. [周荫庄, 冯静楠,岳蕾,屠淑洁, 朱惠菊.化学学报, 2009, 67, 1297.]
(45) Pang, D.; Abruna, H. D. Anal. Chem. 1998, 70, 3162. doi: 10.1021/ac980211a
(46) Sun, Y.; Hou, Y.; Zhou, Q.; Lei, W.; Chen, J.; Wang, X.; Zhang,B. Inorg. Chem. 2010, 49, 10108. doi: 10.1021/ic101391x
(47) Carter, M. T.; Rodriguez, M.; Bard, A. J. J. Am. Chem. Soc.1989, 111, 8901. doi: 10.1021/ja00206a020
(48) Shen, L.; Ji, H. F.; Zhang, H. Y. J. Photochem. Photobiol. A: Chem. 2006, 180, 65. doi: 10.1016/j.jphotochem.2005.09.019
(49) Neves, A.; Terenzi, H.; Horner, R.; Horn, A.; Szpoganicz, B.;Sugai, J. Inorg. Chem. Commun. 2001, 4, 388. doi: 10.1016/S1387-7003(01)00233-7
(50) Saito, I.; Takayama, M.; Sugiyama, H.; Nakatani, K.; Tsuchida,A.; Yamamoto, M. J. Am. Chem. Soc. 1995, 117, 6406.

Copyright © 2006-2014 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top