Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (10): 2162-2172    DOI: 10.3866/PKU.WHXB201308152
THERMODYNAMICS, KINETICS, AND STRUCTURAL CHEMISTRY     
Synthesis and Characterization of a Cu(I) Complex of Dipyrido[3,2-a:2’,3’-c]-7-aza-phenazine and Its Interaction with DNA
GAO Yun-Yan1, CAO Lu1, OU Zhi-Ze1, CHEN Chen1, LI Yi2, WANG Xue-Song2
1 Key Laboratory of Space Applied Physics and Chemistry of the Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, P. R. China;
2 Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download:   PDF(1485KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A 1,10-phenanthroline dipyrido[3,2-a:2',3'-c]-7-aza-phenazine derivative (dpapz) and its Cu(I) complex [Cu(dpapz)2]PF6 are prepared and characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier transform infrared spectroscopy (FTIR), and high resolution electrospray ionization mass spectrometry (HR ESI-MS). The interactions of dpapz and [Cu(dpapz)2]PF6 with calf thymus DNA (CT DNA) are studied by ultraviolet-visible spectroscopy (UV-Vis), fluorescence spectroscopy, DNA melting temperature, and cyclic voltammetry. When the ligand dpapz interacts with DNA, there is no red shift of the absorption peak and only a small hypochromic (<30%) effect on the absorption spectra. In addition, the interaction leads to a slight increase in the melting temperature of DNA (ΔTm=7.8 ℃). All the results indicate that groove binding is the primary interaction of dpapz with CT DNA. However, when [Cu(dpapz)2]PF6 interacts with DNA, there is a red shift of the absorption peak (2-3 nm), a large hypochromic effect on the absorption spectrum (>50%), and a significant increase in the melting temperature of DNA (ΔTm=11.1 ℃), indicating that [Cu(dpapz)2]PF6 electrostatically associates with DNA in a partial intercalation manner. The complexes of dpapz and [Cu(dpapz)2]PF6 with DNA are further confirmed by ethidium bromide (EB) fluorescence assays and cyclic voltammetry. The association constants for dpapz and [Cu(dpapz)2]PF6 with CT DNA are 2.88×105 and 5.32×105 mol·L-1, respectively. The yield of singlet oxygen produced by [Cu(dpapz)2]PF6 is similar to that of dpapz, while the yield of superoxide anion radical for [Cu(dpapz)2]PF6 is lower than that of dpapz. Active oxygen quencher experiments indicate that singlet oxygen, superoxide anion radicals, and hydrogen radicals all take part in the photocleavage of DNA by [Cu(dpapz)2]PF6 and dpapz. However, [Cu(dpapz)2]PF6 causes more photodamage of plasmid DNA than does dpapz, most likely because of its higher affinity for DNA.



Key wordsPhenanthroline derivative      Cu(I) complex      Photocleavage of DNA      Active oxygen      Mode of DNAinteraction     
Received: 20 June 2013      Published: 15 August 2013
MSC2000:  O642  
Fund:  

The project was supported by the National Natural Science Foundation of China (21073143),"Chunhui Project" fromthe Ministry of Education of China (Z2009-1-71002, Z2009-1-71006), NPU Foundation for Fundamental Research, China (JC200822, JC20100239), and NPU Foundation for Graduate Innovation, China.

Corresponding Authors: OU Zhi-Ze, GAO Yun-Yan     E-mail: ouzhize@nwpu.edu.cn;gaoyunyan@nwpu.edu.cn
Cite this article:

GAO Yun-Yan, CAO Lu, OU Zhi-Ze, CHEN Chen, LI Yi, WANG Xue-Song. Synthesis and Characterization of a Cu(I) Complex of Dipyrido[3,2-a:2’,3’-c]-7-aza-phenazine and Its Interaction with DNA. Acta Phys. -Chim. Sin., 2013, 29(10): 2162-2172.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201308152     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I10/2162

(1) Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467. doi: 10.1021/cr980421n
(2) Reedijk, J. Chem. Rev. 1999, 99, 2499. doi: 10.1021/cr980422f
(3) Giaccone, G.; Herbst, R. S.; Manegold, C.; Scagliotti, G.;Rosell, R.; Miller, V. J. Clin. Oncol. 2004, 22, 777. doi: 10.1200/JCO.2004.08.001
(4) Frausto da Silva, J. J. R.; Williams, R. J. P. The Biological Chemistry of the Elements; Clarendon: Oxford, U. K., 1991.
(5) Yoshida, D.; Ikeda, Y.; Nakazawa, S. J. Neurooncol. 1993, 16,109. doi: 10.1007/BF01324697
(6) Coates, R. J.; Weiss, N. S.; Daling, J. R.; Rettmer, R. L.;Warnick, G. R. Cancer Res. 1989, 49, 4353.
(7) Gupta, S. K.; Shukla, V. K.; Vaidya, M. P.; Roy, S. K. J. Surg. Oncol. 1993, 52, 172.
(8) Goswami, T. K.; Roy, M.; Nethaji, M.; Chakravarty, A. R.Organometallics 2009, 28, 1992. doi: 10.1021/om900012b
(9) Lahiri, D.; Bhowmick, T.; Pathak, B.; Shameema, O.; Patra, A.K.; Ramakumar, S.; Chakravarty, A. R. Inorg. Chem. 2009, 48,339. doi: 10.1021/ic800806j
(10) Armitage, B. Chem. Rev. 1998, 98, 1171. doi: 10.1021/cr960428+
(11) Sun, H.; Yu, Z.; Yang, W. Q.; He, W. J.; Guo, Z. J. Chem. J. Chin. Univ. 2011, 32, 437. [孙辉,余臻,杨玮琪, 何卫江,郭子建. 高等学校化学学报, 2011, 32, 437.]
(12) Sathyadevi, P.; Krishnamoorthy, P.; Butorac, R. R.; Cowley, A.H.; Dharmaraj, N. Metallomics 2012, 4, 498. doi: 10.1039/c2mt00004k
(13) Robertazzi, A.; Vargiu, A. V.; Magistrato, A.; Ruggerone, P.;Carloni, P.; de Hoog, P.; Reedijk, J. J. Phys. Chem. B 2009, 113,10881. doi: 10.1021/jp901210g
(14) Sigman, D. Accounts Chem. Res. 1986, 19, 180. doi: 10.1021/ar00126a004
(15) Sathiyaraj, S.; Sampath, K.; Butcher, R. J.; Pallepogu, R.;Jayabalakrishnan, C. Eur. J. Med. Chem. 2013, 64, 81. doi: 10.1016/j.ejmech.2013.03.047
(16) Veal, J. M.; Rill, R. L. Biochemistry 1991, 30, 1132. doi: 10.1021/bi00218a035
(17) Tsiaggalia, M. A.; Andreadou, E. G.; Hatzidimitriou, A. G.;Pantazaki, A. A.; Aslanidis, P. J. Inorg. Biochem. 2013, 121,121. doi: 10.1016/j.jinorgbio.2013.01.001
(18) Pan, C. Q.; Johnson, R. C.; Sigman, D. S. Biochemistry 1996,35, 4326. doi: 10.1021/bi952040z
(19) Xia, S. F.; Lu, X. M. Chem. Bull. 2011, 74, 1069. [夏寺丰, 鲁晓明. 化学通报, 2011, 74, 1069.]
(20) Chen, X.; Gao, F.; Yang, W.; Sun, J.; Zhou, Z.; Ji, L. Inorg. Chim. Acta 2011, 378, 140. doi: 10.1016/j.ica.2011.08.047
(21) Tan, L.; Xiao, Y.; Liu, X.; Zhang, S. Spectrochim. Acta, Part A2009, 73, 858. doi: 10.1016/j.saa.2009.04.021
(22) Wu, B. Y.; Gao, L. H.; Wang, K. Z. Chem. J. Chin. Univ. 2005,26, 1206. [吴宝燕, 高丽华,王科志. 高等学校化学学报,2005, 26, 1206.]
(23) Paw, W.; Eisenberg, R. Inorg. Chem. 1997, 36, 2287. doi: 10.1021/ic9610851
(24) Karlsson, H. J.; Eriksson, M.; Perzon, E.; Akerman, B.; Lincoln,P.; Westman, G. Nucleic Acids Res. 2003, 31, 6227. doi: 10.1093/nar/gkg821
(25) Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.;Goda, Y.; Masumizu, T.; Nagano, T. J. Am. Chem. Soc. 2003,125, 12803. doi: 10.1021/ja0355574
(26) Miyamoto, S.; Martinez, G. R.; Martins, A. P. B.; Medeiros, M.H. G.; Mascio, P. D. J. Am. Chem. Soc. 2003, 125, 4510. doi: 10.1021/ja029262m
(27) Rondelez, Y.; Bertho, G.; Reinaud, O. Angew. Chem. Int. Edit.2002, 41, 1044.
(28) Yang, S. P.; Han, L. J.; Pan, Y.; Wu, Z. M.; He, X. R.; Chen, L.J. Acta Chim. Sin. 2012, 70, 519. [杨树平, 韩立军, 潘燕,吴争鸣, 何欣然, 陈丽娟. 化学学报, 2012, 70, 519.] doi: 10.6023/A1109102
(29) Nishikawa, M.; Nomoto, K.; Kume, S.; Nishihara, H. J. Am. Chem. Soc. 2012, 134, 10543. doi: 10.1021/ja3028873
(30) Ruthkosky, M.; Kelly, C. A.; Castellano, F. N.; Meyer, G. J.Coord. Chem. Rev. 1998, 171, 309. doi: 10.1016/S0010-8545(98)90045-5
(31) Rader, R. A.; McMillin, D. R.; Buckner, M. T.; Matthews, T. G.;Casadonte, D. J.; Lengel, R. K.;Whittaker, S. B.; Darmon, L.M.; Lytle, F. E. J. Am. Chem. Soc. 1981, 103, 5906. doi: 10.1021/ja00409a048
(32) Jin, J.; Xu, X. T.; Cong, S. M.; Li, L.; Zhang, G. N.; Niu, S. Y.Acta Phys. -Chim. Sin. 2012, 28, 2549. [金晶, 徐晓婷,丛盛美,李雷,张广宁, 牛淑云.物理化学学报, 2012, 28, 2549.]doi: 10.3866/PKU.WHXB201207311
(33) Díaz, R.; Reyes, O.; Francois, A.; Leiva, A. M.; Loeb, B.Tetrahedron Lett. 2001, 42, 6463. doi: 10.1016/S0040-4039(01)01289-8
(34) Pyle, A. M.; Rehmann, J. P.; Meshoyrer, R.; Kumar, C. V.;Turro, N. J.; Barton, J. K. J. Am. Chem. Soc. 1989, 111, 3053.
(35) Waring, M. J. J. Mol. Biol. 1965, 13, 269. doi: 10.1016/S0022-2836(65)80096-1
(36) Deng, H.; Cai, J.; Xu, H.; Zhang, H.; Ji, L. Dalton Trans. 2003,325.
(37) Ivanov, V. I.; Minchenkova, L. E.; Schyolkina, A. K.Biopolymers 1973, 12, 89.
(38) Yin, W. F.; Ou, Z. Z.; Gao, Y. Y.; Hao, P.; Guo, C. L.; Wang, Z.L. Acta Chim. Sin. 2010, 68, 1343. [殷卫峰,欧植泽, 高云燕,郝平,郭创龙,王中丽. 化学学报, 2010, 68, 1343.]
(39) Childs, L. J.; Malina, J.; Rolfsnes, B. E.; Pascu, M.; Prieto, M.J.; Broome, M. J.; Rodger, P. M.; Sletten, E.; Moreno, E. V.;Rodger, A.; Hannon, M. J. Chem. -Eur. J. 2006, 12, 4919.
(40) Han, M.; Duan, Z.; Hao, Q.; Zheng, S.; Wang, K. J. Phys. Chem. C 2007, 111, 16577. doi: 10.1021/jp075194k
(41) Sheng, X.; Guo, X.; Lu, X.; Lu, G.; Shao, Y.; Liu, F.; Xu, Q.Bioconjugate Chem. 2008, 19, 490. doi: 10.1021/bc700322w
(42) Tietze, M.; Beuchle, A.; Lamla, I.; Orth, N.; Dehler, M.;Greiner, G.; Beifuss, U. ChemBioChem 2003, 4, 333. doi: 10.1002/cbic.v4:4
(43) Pellegrin, Y.; Sandroni, M.; Blart, E.; Planchat, A.; Evain, M.;Bera, N. C.; Kayanuma, M.; Sliwa, M.; Rebarz, M.; Poizat, O.;Daniel, C.; Odobel, F. Inorg. Chem. 2011, 50, 11309. doi: 10.1021/ic2006343
(44) Zhou, Y. Z.; Feng, J. N.; Yue, L.; Tu, S. J.; Zhu, H. J. Acta Chim. Sin. 2009, 67, 1297. [周荫庄, 冯静楠,岳蕾,屠淑洁, 朱惠菊.化学学报, 2009, 67, 1297.]
(45) Pang, D.; Abruna, H. D. Anal. Chem. 1998, 70, 3162. doi: 10.1021/ac980211a
(46) Sun, Y.; Hou, Y.; Zhou, Q.; Lei, W.; Chen, J.; Wang, X.; Zhang,B. Inorg. Chem. 2010, 49, 10108. doi: 10.1021/ic101391x
(47) Carter, M. T.; Rodriguez, M.; Bard, A. J. J. Am. Chem. Soc.1989, 111, 8901. doi: 10.1021/ja00206a020
(48) Shen, L.; Ji, H. F.; Zhang, H. Y. J. Photochem. Photobiol. A: Chem. 2006, 180, 65. doi: 10.1016/j.jphotochem.2005.09.019
(49) Neves, A.; Terenzi, H.; Horner, R.; Horn, A.; Szpoganicz, B.;Sugai, J. Inorg. Chem. Commun. 2001, 4, 388. doi: 10.1016/S1387-7003(01)00233-7
(50) Saito, I.; Takayama, M.; Sugiyama, H.; Nakatani, K.; Tsuchida,A.; Yamamoto, M. J. Am. Chem. Soc. 1995, 117, 6406.

[1] Zhang-Rong LOU,Peng LI,Ke-Li HAN. Fluorescent Probes for Mitochondrial Reactive Oxygen Species in Biological Systems[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1573-1588.
[2] ZHU Jin-Xin, SHEN Mei-Qing, Lü Liang-Fang, WANG Jun, WANG Jian-Qiang. Effects of Two Different CeO2 Materials on Lean NOx Trap Performance below 300 ℃[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1559-1566.
[3] Li Xu-Yuan,Zhang Zi-Ping,Ma Jian-Tai,Zhu Zong-Zhen,Meng Yi-Min. The Catalytic Activity for CO Oxidation and Characterization of Perovskite-type Oxides Catalysts La1+X/2Sr1-x/2Co1-xCuxO3[J]. Acta Phys. -Chim. Sin., 1996, 12(06): 502-507.