Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (10): 2232-2238    DOI: 10.3866/PKU.WHXB201308291
Cu-Doped Titania Nanotubes for Visible-Light Photocatalytic Mineralization of Toluene
ZHAO Wei-Rong, XI Hai-Ping, LIAO Qiu-Wen
Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, P. R. China
Download:   PDF(838KB) Export: BibTeX | EndNote (RIS)      


Based on hydrogen titanate nanotubes prepared by a low-temperature hydrothermal technique, Cu-doped titania nanotube (Cu-TNT) catalysts were prepared using absorption-calcination methods. They were characterized by X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and electrochemical techniques. Density functional theory (DFT) was used to calculate the nanotube band structure and density of states. Cu/Ti atomic ratios in the synthesized powders were very close to the nominal values, and the Cu-doped TiO2 lattice exhibited improved visible-light absorption. This was because the valence band, formed by hybridization of O 2p states with Cu 3d states, was negatively shifted. Thus, the band gap was reduced to 2.50-2.91 eV and the samples exhibited visible-light responses. Toluene was chosen as a model pollutant to evaluate the removal capacity and the CO2 mineralization rate of volatile organic compounds under visible light. Pure TNT displayed poor visible-light activity, and the activities of samples with >0.1% Cu doping were also weak. Samples doped with 0.1% Cu exhibited optimumvisible-light photocatalytic oxidation activity, with a 77%toluene degradation efficiency and a 59%mineralization rate in 7 h.

Key wordsHydrothermal method      Impregnation-calcination method      Electrochemical      Density functional theory      Volatile organic compounds      CO2     
Received: 21 May 2013      Published: 29 August 2013
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (51178412, 51278456) and Zhejiang Provincial Education Department Scientific Research Projects, China (Z201122663).

Corresponding Authors: ZHAO Wei-Rong     E-mail:
Cite this article:

ZHAO Wei-Rong, XI Hai-Ping, LIAO Qiu-Wen. Cu-Doped Titania Nanotubes for Visible-Light Photocatalytic Mineralization of Toluene. Acta Phys. -Chim. Sin., 2013, 29(10): 2232-2238.

URL:     OR

(1) Wu, S. X.; Ma, Z.; Qin, Y. S.; Qi, X. Z.; Liang, Z. C. Acta Phys. -Chim. Sin. 2004, 20 (2), 138. [吴树新,马智,秦永守, 齐晓周,梁珍成. 物理化学学报, 2004, 20 (2), 138.] doi: 10.3866/PKU.WHXB20040206
(2) Maeda, M.; Yamada, T. J. Phys.: Conf. Ser. 2007, 61, 755. doi: 10.1088/1742-6596/61/1/151
(3) Karunakaran, C.; Abiramasundari, G.; Gomathisankar, P.;Manikandan, G.; Anandi, V. J. Colloid Interface Sci. 2010, 352 (1), 68. doi: 10.1016/j.jcis.2010.08.012
(4) Park, H. S.; Kim, D. H.; Kim, S. J.; Lee, K. S. J. Alloy. Compd.2006, 415 (1-2), 51. doi: 10.1016/j.jallcom.2005.07.055
(5) Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98 (51), 13669. doi: 10.1021/j100102a038
(6) Xu, C.; Cui, A.; Yuan, Y.; Chen, Z.; Yuan, R.; Fu, X. J. Mater. Sci. 2013, 48 (9), 3428. doi: 10.1007/s10853-012-7130-7
(7) Deng, L.; Wang, S.; Liu, D.; Zhu, B.; Huang, W.;Wu, S.;Zhang, S. Catal. Lett. 2009, 129 (3-4), 513. doi: 10.1007/s10562-008-9834-5
(8) Xu, S.; Du, A. J.; Liu, J.; Ng, J.; Sun, D. D. Int. J. Hydrog. Energy 2011, 36 (11), 6560. doi: 10.1016/j.ijhydene.2011.02.103
(9) Yu, J.; Xiang, Q.; Zhou, M. Appl. Catal. B-Environ. 2009, 90 (3), 595.
(10) Yousef, A.; Barakat, N. A.; Amna, T.; Al-Deyab, S. S.; Hassan,M. S.; Abdel-hay, A.; Kim, H. Y. Ceram. Int. 2012, 38 (6),4525. doi: 10.1016/j.ceramint.2012.02.029
(11) Shen, J. J.; Liu, C.; Zhu, Y. D.; Li, W.; Feng, X.; Lu, X. H. Acta Phys. -Chim. Sin. 2009, 25 (5), 1013. [沈晶晶,刘畅,朱育丹,李伟,冯新,陆小华.物理化学学报, 2009, 25 (5),1013.] doi: 10.3866/PKU.WHXB20090421
(12) You, M.; Kim, T. G.; Sung, Y. M. Cryst. Growth Des. 2009, 10 (2), 983.
(13) Nishikiori, H.; Sato, T.; Kubota, S.; Tanaka, N.; Shimizu, Y.;Fujii, T. Res. Chem. Intermed. 2012, 38 (2), 595. doi: 10.1007/s11164-011-0374-z
(14) Ou, H. H.; Lo, S. L. J. Mol. Catal. A-Chem. 2007, 275 (1-2),200. doi: 10.1016/j.molcata.2007.05.044
(15) Wu, Q.; Su, J. F.; Sun, L.; Wang, M. Y.; Wang, Y. Y.; Lin, C. J.Acta Phys. -Chim. Sin. 2012, 28 (3), 635. [吴奇, 苏钰丰,孙岚,王梦晔,王莹莹, 林昌健.物理化学学报, 2012, 28 (3),635.] doi: 10.3866/PKU.WHXB201112231
(16) Ni, M.; Leung, M. K.; Leung, D. Y.; Sumathy, K. Renewable and Sustainable Energy Reviews 2007, 11 (3), 401. doi: 10.1016/j.rser.2005.01.009
(17) Colon, G.; Maicu, M.; Hidalgo, M. C.; Navio, J. A. Appl. Catal. B-Environ. 2006, 67 (1-2), 41. doi: 10.1016/j.apcatb.2006.03.019
(18) Taveira, L. V.; Montemor, M. F.; Da Cunha Belo, M.; Ferreira,M. G.; Dick, L. F. P. Corrosion Sci. 2010, 52 (9), 2813. doi: 10.1016/j.corsci.2010.04.021
(19) Cheng, X. F.; Leng, W. H.; Liu, D. P.; Zhang, J. Q.; Cao, C. N.Chemosphere 2007, 68 (10), 1976. doi: 10.1016/j.chemosphere.2007.02.010
(20) Sun, L.; Li, G.; Wan, S.; An, T. Chemosphere 2010, 78 (3),313. doi: 10.1016/j.chemosphere.2009.10.032
(21) Guo, M.; Du, J. Physica B 2012, 407, 1003. doi: 10.1016/j.physb.2011.12.128
(22) Sopyan, I.; Watanabe, M.; Murasawa, S.; Hashimoto, K.;Fujishima, A. J. Photochem. Photobiol. A-Chem. 1996, 98 (1-2),79. doi: 10.1016/1010-6030(96)04328-6
(23) Bosc, F.; Edwards, D.; Keller, N.; Keller, V.; Ayral, A. Thin Solid Films 2006, 495 (1-2), 272. doi: 10.1016/j.tsf.2005.08.361
(24) Mo, J.; Zhang, Y.; Xu, Q.; Zhu, Y.; Lamson, J. J.; Zhao, R. Appl. Catal. B-Environ. 2009, 89 (3-4), 570. doi: 10.1016/j.apcatb.2009.01.015
(25) Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J. J.; Zhao, R. Atmos. Environ. 2009, 43 (14), 2229. doi: 10.1016/j.atmosenv.2009.01.034
(26) García-Pérez, U. M.; Sepúlveda-Guzmán, S.; Martínez-de laCruz, A.; Peral, J. Int. J. Electrochem. Sci. 2012, 7, 9622.
(27) Zhou, M.; Yu, J.; Cheng, B. J. Hazard. Mater. 2006, 137 (3),1838. doi: 10.1016/j.jhazmat.2006.05.028

[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[3] Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944.
[4] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[5] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[6] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[7] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[8] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[9] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[10] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[11] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[12] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[13] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[14] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[15] Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105.