Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (11): 2422-2428    DOI: 10.3866/PKU.WHXB201309021
CATALYSIS AND SURFACE SCIENCE     
Denitrogenation through Adsorption to Sulfonated Metal-Organic Frameworks
WANG Zhao-Yang, LI Gang, SUN Zhi-Guo
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
Download:   PDF(682KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Sulfonic acid functionalized MIL-101(Cr) (S-MIL-101(Cr)) are obtained by sulfonation of MIL-101(Cr) (Cr3F(H2O)2O[(O2C)-C6H4-(CO2)]3·nH2O (n~25)) using triflic anhydride and sulfuric acid. The amount of sulfonic groups in the framework can be controlled by changing the molar ratio of MIL-101(Cr), triflic anhydride, and sulfuric acid. The sulfonated samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, nitrogen physical adsorption/desorption, acid-base potentiometric titration, and thermogravimetric analysis (TGA). The results show that the sulfonated samples retain the general structure of MIL-101(Cr), but the specific areas and pore diameters decrease. The sulfonated samples formed with between 0.21 and 0.42 mmol·g-1 of sulfonic acid groups. The adsorptive denitrogenation of a model fuel by different S-MIL-101(Cr) samples was investigated in batch adsorption experiments. Sulfonation can strengthen the interactions between nitrogen-containing compounds (NCCs) and the adsorbent. The sample obtained using a molar ratio of n(MIL-101(Cr)):n(H2SO4):n(Tf2O)=1:3:4.5 had the largest adsorption capacity for quinoline and indole. Compared with the bare MIL-101(Cr), this sulfonated material showed enhancement of the maximum adsorption capacity by 12.2% and 6.3% for quinoline and indole, respectively. Regeneration of the used adsorbent was conducted by washing with ethanol, and the adsorptive capacity for NCCs from the model-fuel showed no obvious decrease after three cycles of use.



Key wordsMetal-organic framework      Sulfoacid functionalization      Adsorptive denitrogenation      Langmuir adsorption      Adsorption isothermal     
Received: 12 June 2013      Published: 02 September 2013
MSC2000:  O647  
Fund:  

The project was supported by the National Key Basic Research Program of China (973) (2011CB201301).

Corresponding Authors: LI Gang     E-mail: liganghg@dlut.edu.cn
Cite this article:

WANG Zhao-Yang, LI Gang, SUN Zhi-Guo. Denitrogenation through Adsorption to Sulfonated Metal-Organic Frameworks. Acta Phys. Chim. Sin., 2013, 29(11): 2422-2428.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201309021     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I11/2422

(1) Furimsky, E.; Massoth, F. E. Catal. Today 1999, 52 (4), 381.doi: 10.1016/S0920-5861(99)00096-6
(2) Dong, D.; Jeong, S.; Massoth, F. E. Catal. Today 1997, 37 (3),267. doi: 10.1016/S0920-5861(97)00022-9
(3) Xu, C. M.; Yang, Z. H. Petroleum Refining Engineering;Petroleum Industry Press: Beijing, 2009; pp 8-10 [徐春明, 杨朝合. 石油炼制工程. 北京: 石油工业出版社, 2009: 8-10]
(4) Schlatter, J. C.; Oyama, S. T.; Metcalfe Iii, J. E.; Lambert, J. M.,Jr. Ind. Eng. Chem. Res. 1988, 27 (9), 1648. doi: 10.1021/ie00081a014
(5) Choi, J.; Brenner, J. R.; Colling, C.W.; Demczyk, B. G.;Dunning, J. L.; Thompson, L. T. Catal. Today 1992, 15 (2),201. doi: 10.1016/0920-5861(92)80176-N
(6) Song, H.; Guo, Y. T.; Li, F.; Yu, H. K. Acta Phys. -Chim. Sin.2010, 26, 2461. [宋华, 郭云涛, 李锋, 于洪坤. 物理化学学报, 2010, 26, 2461.] doi: 10.3866/PKU.WHXB20100937
(7) Laredo, G. C.; Leyva, S.; Alvarez, R.; Mares, M. T.; Castillo, J.;Cano, J. L. Fuel 2002, 81 (10), 1341. doi: 10.1016/S0016-2361(02)00047-9
(8) Almarri, M.; Ma, X.; Song, C. Energy Fuels 2009, 23 (8), 3940.doi: 10.1021/ef900051r
(9) Sun, B.; Li, G.;Wang, X. J. Nat. Gas Chem. 2010, 19 (5), 471.doi: 10.1016/S1003-9953(09)60115-8
(10) Kim, J. H.; Ma, X.; Zhou, A.; Song, C. Catal. Today 2006, 111 (1-2), 74.
(11) Wu, J.; Li, X.; Du,W.; Dong, C.; Li, L. J. Mater. Chem. 2007,17 (21), 2233. doi: 10.1039/b612501h
(12) Zhang, H.; Li, G.; Jia, Y.; Liu, H. J. Chem. Eng. Data 2009,55 (1), 173.
(13) Laredo, G. C.; Vega-Merino, P. M.; Trejo-Zárraga, F.; Castillo,J. Fuel Proces. Technol. 2013, 106, 21. doi: 10.1016/j.fuproc.2012.09.057
(14) Volkringer, C.; Loiseau, T.; Férey, G.; Morais, C. M.; Taulelle,F.; Montouillout, V.; Massiot, D. Microporous Mesoporous Mat. 2007, 105 (1-2), 111.
(15) Cychosz, K. A.;Wong-Foy, A. G.; Matzger, A. J. J. Am. Chem. Soc. 2008, 130 (22), 6938. doi: 10.1021/ja802121u
(16) Blanco-Brieva, G.; Campos-Martin, J. M.; Al-Zahrani, S. M.;Fierro, J. Fuel 2011, 90 (1), 190. doi: 10.1016/j.fuel.2010.08.008
(17) Khan, N. A.; Jhung, S. H. Fuel Process. Technol. 2012, 100, 49.doi: 10.1016/j.fuproc.2012.03.006
(18) Maes, M.; Trekels, M.; Boulhout, M.; Schouteden, S.;Vermoortele, F.; Alaerts, L.; Heurtaux, D.; Seo, Y.; Hwang, Y.K.; Chang, J.; Beurroies, I.; Denoyel, R.; Temst, K.; Vantomme,A.; Horcajada, P.; Serre, C.; De Vos, D. E. Angew. Chem. Int. Edit. 2011, 50 (18), 4210. doi: 10.1002/anie.v50.18
(19) Ahmed, I.; Hasan, Z.; Khan, N. A.; Jhung, S. H. Appl. Catal. B 2013, 129, 123. doi: 10.1016/j.apcatb.2012.09.020
(20) Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38 (5), 1315.doi: 10.1039/b802258p
(21) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour,J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040. doi: 10.1126/science.1116275
(22) Goesten, M. G.; Juan-Alcañiz, J.; Ramos-Fernandez, E. V.; SaiSankar Gupta, K. B.; Stavitski, E.; van Bekkum, H.; Gascon, J.;Kapteijn, F. J. Catal. 2011, 281 (1), 177. doi: 10.1016/j.jcat.2011.04.015
(23) Akiyama, G.; Matsuda, R.; Sato, H.; Takata, M.; Kitagawa,S. Adv. Mater. 2011, 23 (29), 3294. doi: 10.1002/adma.201101356
(24) Atorngitjawat, P.; Klein, R. J.; Runt, J. Macromolecules2006, 39 (5), 1815. doi: 10.1021/ma051717f
(25) Warren, D. S.; Mcquillan, A. J. J. Phys. Chem. B 2008, 112 (34),10535. doi: 10.1021/jp801838n
(26) Ostrowska-Gumkowska, B.; Ostrowska-Czubenko, J. Euro. Poly. J. 1994, 30 (8), 869. doi: 10.1016/0014-3057(94)90017-5

[1] LI Xiao-Lei, TAO Shuo, LI Ke-Da, WANG Ya-Song, WANG Ping, TIAN Zhi-Jian. In situ Synthesis of ZIF-8 Membranes with Gas Separation Performance in a Deep Eutectic Solvent[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1495-1500.
[2] LIU Zhen-Zhen, SHI Yong, LI Chun-Yan, ZHAO Qi-Dong, LI Xin-Yong. Electrochemical Synthesis of Cu3(BTC)2-MOF for Selective Catalytic Reduction of NO with NH3[J]. Acta Phys. Chim. Sin., 2015, 31(12): 2366-2374.
[3] XU Hong, TONG Min-Man, WU Dong, XIAO Gang, YANG Qing-Yuan, LIU Da-Huan, ZHONG Chong-Li. Computational Study of Metal-Organic Frameworks for Removing H2S from Natural Gas[J]. Acta Phys. Chim. Sin., 2015, 31(1): 41-50.
[4] JIANG Jun, LI Gang, KONG Ling-Hao. Hydrogenation of Nitrobenzene Catalyzed by Metal-Organic Framework-Supported Ni Nanoparticles[J]. Acta Phys. Chim. Sin., 2015, 31(1): 137-144.
[5] TAN Xiao-He, ZHOU Gong-Bing, DOU Rong-Fei, PEI Yan, FAN Kang-Nian, QIAO Ming-Hua, SUN Bin, ZONG Bao-Ning. Partial Hydrogenation of Benzene to Cyclohexene over Novel Ru-B/MOF Catalysts[J]. Acta Phys. Chim. Sin., 2014, 30(5): 932-942.
[6] TAN Hai-Yan, WU Jin-Ping. Performance of a Metal-Organic Framework MIL-53(Al)-Supported Cobalt Catalyst in the CO Catalytic Oxidation Reaction[J]. Acta Phys. Chim. Sin., 2014, 30(4): 715-722.
[7] LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(1): 129-134.
[8] AN Xiao-Hui, LIU Da-Huan, ZHONG Chong-Li. Stepped Behavior of Carbon Dioxide Adsorption in Metal-Organic Frameworks[J]. Acta Phys. Chim. Sin., 2011, 27(03): 553-558.
[9] MU Wei, LIU Da-Huan, YANG Qing-Yuan, ZHONG Chong-Li. Diffusion Rates of Gas Molecules Adsorbed in Metal-Organic Frameworks[J]. Acta Phys. Chim. Sin., 2010, 26(06): 1657-1663.
[10] ZENG Yu-Yao; ZHANG Bing-Jian. Designed Metal-Organic Frameworks Based on MOF-5 and Their Methane Adsorption Calculation by Grand Canonical Monte
Carlo Method
[J]. Acta Phys. Chim. Sin., 2008, 24(08): 1493-1497.