Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2013,Vol.29>> Issue(11)>> 2361-2370     doi: 10.3866/PKU.WHXB201309032         中文摘要
ELECTROCHEMISTRY AND NEW ENERGY
Reconstruction of LiCoO2 Cathode Microstructure and Prediction of Effective Transport Coefficients
WU Wei1,2, JIANG Fang-Ming1, ZENG Jian-Bang1
1 Laboratory of Advanced Energy Systems, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Full text: PDF (1600KB) Export: BibTeX | EndNote (RIS)

Understanding the impact of microstructure of lithium-ion battery electrodes on performance is important for the development of relevant technologies. In the present work, the Monte Carlo Ising model was extended for the reconstruction of three-dimensional (3D) microstructure of a LiCoO2 lithium-ion battery cathode. The electrode is reconstructed with a resolution on the scale of 50 nanometers, which allows three individual phases to be evidently distinguished: LiCoO2 particles as the active material, pores or electrolyte and additives (polyvinylidene fluoride (PVDF) + carbon black). Characterization of the reconstructed cathode reveals some important structural and transport properties, including the geometrical connectivity and tortuosity of specific phases, the spatial distribution and volume fractions of specific phases, the specific surface area, and the pore size distribution. A D3Q15 lattice Boltzmann model (LBM) was developed and used to calculate the effective thermal conductivity and the effective transport coefficient of the electrolyte (or solid) phase. It is found that tortuosity values determined by LBMare more reliable than those predicted by the random walk simulation or the Bruggeman equation.



Keywords: Pore-scale modeling to lithium-ion battery   Microstructure reconstruction   Monte Carlo approach   Characterization   Tortuosity   Effective transport coefficient   Lattice Boltzmann method   Random walk method  
Received: 2013-06-28 Accepted: 2013-09-02 Publication Date (Web): 2013-09-03
Corresponding Authors: JIANG Fang-Ming Email: jiangfm@ms.giec.ac.cn

Fund: The project was supported by the National Natural Science Foundation of China (51206171) and CAS“100 Talents”Program.

Cite this article: WU Wei, JIANG Fang-Ming, ZENG Jian-Bang. Reconstruction of LiCoO2 Cathode Microstructure and Prediction of Effective Transport Coefficients[J]. Acta Phys. -Chim. Sin., 2013,29 (11): 2361-2370.    doi: 10.3866/PKU.WHXB201309032

(1) Wang, C.W.; Sastry, A. M. J. Electrochem. Soc. 2007, 154,A1035.
(2) Du,W. B.; Gupta, A.; Zhang, X. C.; Sastry, A. M.;Wei, S. Y.Int. J. Heat Mass Transfer 2010, 53, 3552. doi: 10.1016/j.ijheatmasstransfer.2010.04.017
(3) Gupta, A.; Seo, J. H.; Zhang, X. C.; Du,W. B.; Sastry, A. M.;Wei, S. Y. J. Electrochem. Soc. 2011, 158, A487.
(4) Spanne, P.; Thovert, J. F.; Jacquin, C. J. Phys. Rev. Lett. 1994,73, 2001. doi: 10.1103/PhysRevLett.73.2001
(5) Yoshizawa, N.; Tanaike, O.; Hatori, H. Carbon 2006, 44, 2558.doi: 10.1016/j.carbon.2006.05.041
(6) Groeber, M. A.; Haley, B. K.; Uchic, M. D. Mater. Charact.2006, 57, 259. doi: 10.1016/j.matchar.2006.01.019
(7) Shearing, P. R.; Golbert, J.; Chater, R. J. Chem. Eng. Sci. 2009,64, 3928. doi: 10.1016/j.ces.2009.05.038
(8) Yuan, B. K.; Chen, P. C.; Zhang, J.; Cheng, Z. H.; Qiu, X. H.;Wang, C. Acta Phys. -Chim. Sin. 2013, 29, 1370. [袁秉凯, 陈鹏程, 仉君, 程志海, 裘晓辉, 王琛. 物理化学学报, 2013,29, 1370.] doi: 10.3866/PKU.WHXB201304191
(9) Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29,293. [丁朋, 徐友龙, 孙孝飞. 物理化学学报, 2013, 29,293.] doi: 10.3866/PKU.WHXB201211142
(10) Quiblier, J. J. Colloid Interface Sci. 1984, 98, 84.
(11) Yeong, C. L. Y.; Torquato, S. Phys. Rev. E 1998, 57, 495. doi: 10.1103/PhysRevE.57.495
(12) Kim, S. H.; Pitsch, H. J. Electrochem. Soc. 2009, 156, B673.
(13) Wu,W.; Jiang, F. M. Mater. Charact. 2013, 80, 62. doi: 10.1016/j.matchar.2013.03.011
(14) Bakke, S.; Øren, P. E. J. SPE 1997, 2, 136.
(15) Stephenson, D. E.;Walker, B. C.; Skelton, C. B.; Gorzkowski,E. P.; Rowenhorst, D. J.; Wheeler, D. R. J. Electrochem. Soc.2011, 158, A781.
(16) Carson, J. K.; Lovatt, J.; Tanner, D. J.; Cleland, A. C. J. Food Eng. 2006, 75, 297. doi: 10.1016/j.jfoodeng.2005.04.021
(17) Wang, J. F.; Carson, J. K.; North, M. F.; Cleland, D. J. Int. J. Heat Mass Transfer 2006, 49, 3075. doi: 10.1016/j.ijheatmasstransfer.2006.02.007
(18) Doyle, M.; Newman, J.; Fuller, T. F. J. Electrochem. Soc. 1993,140, 1526. doi: 10.1149/1.2221597
(19) Das, P. K.; Li, X. G.; Liu, Z. S. Applied Energy 2010, 87, 2785.
(20) Doyle, M.; Newman, J.; Gozdz, A. S.; Schmutz, C. N.;Tarascon, J. M. J. Electrochem. Soc. 1996, 143, 1890. doi: 10.1149/1.1836921
(21) Fuller, T. F.; Doyle, M.; Newman, J. J. Electrochem. Soc. 1994,141, 1. doi: 10.1149/1.2054684
(22) Fan, D.; White, R. E. J. Electrochem. Soc. 1991, 138, 17. doi: 10.1149/1.2085532
(23) Patel, K. K.; Paulser, K. M.; Desilvestro, J. J. Power Sources2003, 122, 144. doi: 10.1016/S0378-7753(03)00399-9
(24) Thovert, J. F.;Wary, F.; Adler, P. M. J. Appl. Phys. 1990, 68,3872. doi: 10.1063/1.346274
(25) Jiang, F. M.; Sousa, A. C. M. Heat and Mass Transfer 2006, 43,479.
(26) Shoshany, Y.; Prialnik, D.; Podolak, M. Icarus 2002, 157,219. doi: 10.1006/icar.2002.6815
(27) Barta, S.; Dieska, P. Kovove Mater. 2002, 40, 99.
(28) Wang, M.;Wang, K.; Pan, N.; Chen, S. Phys. Rev. E 2007, 75,036702.
(29) Xuan, Y. M.; Zhao, K.; Li, Q. Heat Mass Transfer 2010, 46,1039. doi: 10.1007/s00231-010-0687-2
(30) Joshi, A. S.; Grew, K. N.; Izzo, J. R.; Peracchio, A. A.; Chiu, S.W. K. J. Fuel Cell Sci. Technol. 2010, 7, 011006-1. doi: 10.1115/1.3117251
(31) Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties; Springer Verlag: Berlin, 2002;p 23.
(32) Zou, Q.; He, X. Phys. Fluids 1997, 9, 1591. doi: 10.1063/1.869307
(33) Wang, J. K.;Wang, M.; Li, Z. X. Int. J. Thermal Sci. 2007, 46,228. doi: 10.1016/j.ijthermalsci.2006.04.012
(34) Ziegler, D. J. Stat. Phys. 1993, 71, 1171. doi: 10.1007/BF01049965
(35) Hoshen, J.; Kopelman, R. Phys. Rev. B 1976, 14, 3438. doi: 10.1103/PhysRevB.14.3438
(36) Kiyohara, K.; Sugino, T.; Asaka, K. J. Chem. Phys. 2010, 132,144705. doi: 10.1063/1.3376611
(37) Thorat, V.; Stephenson, D. E.; Zacharias, N. A.; Zaghib, K.;Harb, J. N.; Wheeler, D. R. J. Power Sources 2009, 188, 592.doi: 10.1016/j.jpowsour.2008.12.032
(38) Promentilla, M. A. B.; Sugiyama, T.; Hitomi, T.; Takeda, N.Cement Concrete Res. 2009, 39, 548. doi: 10.1016/j.cemconres.2009.03.005

1. HUANG Hong-xin.Differential Accurate Fixed-node Quantum Monte Carlo Method[J]. Acta Phys. -Chim. Sin., 2005,21(06): 632-636
2. Huang Hong-Xin.Self-optimizing Surplus Function Quantum Monte Carlo Approach[J]. Acta Phys. -Chim. Sin., 2003,19(08): 742-746
3. Shao Xiao-Hong;Zhang Xian-Ren;Wang Wen-Chuan.Comparison of Density Functional Theory and Molecular Simulation Methods for Pore Size Distribution of Mesoporous Materials[J]. Acta Phys. -Chim. Sin., 2003,19(06): 538-542
4. Guo Xiang-Yun.Formation and Growth Mechanism of Pdn Clusters Studied by the Monte Carlo Method[J]. Acta Phys. -Chim. Sin., 2003,19(02): 174-176
5. Zhong Wen;Ding Xin;Tang Zhi-Lian.Statistical Modeling of Liquid Wetting in Fibrous Assemblies[J]. Acta Phys. -Chim. Sin., 2001,17(08): 682-686
6. Huang Hong-Xin, Zeng Xian-Biao.Quantum Monte Carlo Approach Process Excited State[J]. Acta Phys. -Chim. Sin., 2000,16(08): 681-688
7. Huang Hong-Xin, Lian Shi-Xun, Cao Ze-Xing.Surplus Function Quantum Monte Carlo Approach[J]. Acta Phys. -Chim. Sin., 1999,15(07): 599-605
8. Zhang Xiao-Gang,Guo Xiang-Yun,Zhong Bing,Peng Shao-Yi.Monte Carlo Study of Methanol Clusters in Supercritical Cyclohexane System[J]. Acta Phys. -Chim. Sin., 1997,13(10): 898-903
9. Huang Hong-Xin,Zhong Zi-Yi,Cao Ze-Xing.Variational Monte Carlo Treatment of Molecules[J]. Acta Phys. -Chim. Sin., 1997,13(08): 706-711
10. Guo Xiang-Yun,Zhong Bing,Peng Shao-Yi.Simulation of Complex Dynamic Behavior during N2O Catalytic Decomposition[J]. Acta Phys. -Chim. Sin., 1995,11(10): 873-875
11. Guo Xiang-Yun, Zhong Bing, Peng Shao-Yi.Kinetics of Decomposition of N2O—Monte Carlo Simulation[J]. Acta Phys. -Chim. Sin., 1995,11(02): 180-184
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top