Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (11): 2361-2370    DOI: 10.3866/PKU.WHXB201309032
ELECTROCHEMISTRY AND NEW ENERGY     
Reconstruction of LiCoO2 Cathode Microstructure and Prediction of Effective Transport Coefficients
WU Wei1,2, JIANG Fang-Ming1, ZENG Jian-Bang1
1 Laboratory of Advanced Energy Systems, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(1600KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Understanding the impact of microstructure of lithium-ion battery electrodes on performance is important for the development of relevant technologies. In the present work, the Monte Carlo Ising model was extended for the reconstruction of three-dimensional (3D) microstructure of a LiCoO2 lithium-ion battery cathode. The electrode is reconstructed with a resolution on the scale of 50 nanometers, which allows three individual phases to be evidently distinguished: LiCoO2 particles as the active material, pores or electrolyte and additives (polyvinylidene fluoride (PVDF) + carbon black). Characterization of the reconstructed cathode reveals some important structural and transport properties, including the geometrical connectivity and tortuosity of specific phases, the spatial distribution and volume fractions of specific phases, the specific surface area, and the pore size distribution. A D3Q15 lattice Boltzmann model (LBM) was developed and used to calculate the effective thermal conductivity and the effective transport coefficient of the electrolyte (or solid) phase. It is found that tortuosity values determined by LBMare more reliable than those predicted by the random walk simulation or the Bruggeman equation.



Key wordsPore-scale modeling to lithium-ion battery      Microstructure reconstruction      Monte Carlo approach      Characterization      Tortuosity      Effective transport coefficient      Lattice Boltzmann method      Random walk method     
Received: 28 June 2013      Published: 03 September 2013
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (51206171) and CAS“100 Talents”Program.

Corresponding Authors: JIANG Fang-Ming     E-mail: jiangfm@ms.giec.ac.cn
Cite this article:

WU Wei, JIANG Fang-Ming, ZENG Jian-Bang. Reconstruction of LiCoO2 Cathode Microstructure and Prediction of Effective Transport Coefficients. Acta Phys. Chim. Sin., 2013, 29(11): 2361-2370.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201309032     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I11/2361

(1) Wang, C.W.; Sastry, A. M. J. Electrochem. Soc. 2007, 154,A1035.
(2) Du,W. B.; Gupta, A.; Zhang, X. C.; Sastry, A. M.;Wei, S. Y.Int. J. Heat Mass Transfer 2010, 53, 3552. doi: 10.1016/j.ijheatmasstransfer.2010.04.017
(3) Gupta, A.; Seo, J. H.; Zhang, X. C.; Du,W. B.; Sastry, A. M.;Wei, S. Y. J. Electrochem. Soc. 2011, 158, A487.
(4) Spanne, P.; Thovert, J. F.; Jacquin, C. J. Phys. Rev. Lett. 1994,73, 2001. doi: 10.1103/PhysRevLett.73.2001
(5) Yoshizawa, N.; Tanaike, O.; Hatori, H. Carbon 2006, 44, 2558.doi: 10.1016/j.carbon.2006.05.041
(6) Groeber, M. A.; Haley, B. K.; Uchic, M. D. Mater. Charact.2006, 57, 259. doi: 10.1016/j.matchar.2006.01.019
(7) Shearing, P. R.; Golbert, J.; Chater, R. J. Chem. Eng. Sci. 2009,64, 3928. doi: 10.1016/j.ces.2009.05.038
(8) Yuan, B. K.; Chen, P. C.; Zhang, J.; Cheng, Z. H.; Qiu, X. H.;Wang, C. Acta Phys. -Chim. Sin. 2013, 29, 1370. [袁秉凯, 陈鹏程, 仉君, 程志海, 裘晓辉, 王琛. 物理化学学报, 2013,29, 1370.] doi: 10.3866/PKU.WHXB201304191
(9) Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29,293. [丁朋, 徐友龙, 孙孝飞. 物理化学学报, 2013, 29,293.] doi: 10.3866/PKU.WHXB201211142
(10) Quiblier, J. J. Colloid Interface Sci. 1984, 98, 84.
(11) Yeong, C. L. Y.; Torquato, S. Phys. Rev. E 1998, 57, 495. doi: 10.1103/PhysRevE.57.495
(12) Kim, S. H.; Pitsch, H. J. Electrochem. Soc. 2009, 156, B673.
(13) Wu,W.; Jiang, F. M. Mater. Charact. 2013, 80, 62. doi: 10.1016/j.matchar.2013.03.011
(14) Bakke, S.; Øren, P. E. J. SPE 1997, 2, 136.
(15) Stephenson, D. E.;Walker, B. C.; Skelton, C. B.; Gorzkowski,E. P.; Rowenhorst, D. J.; Wheeler, D. R. J. Electrochem. Soc.2011, 158, A781.
(16) Carson, J. K.; Lovatt, J.; Tanner, D. J.; Cleland, A. C. J. Food Eng. 2006, 75, 297. doi: 10.1016/j.jfoodeng.2005.04.021
(17) Wang, J. F.; Carson, J. K.; North, M. F.; Cleland, D. J. Int. J. Heat Mass Transfer 2006, 49, 3075. doi: 10.1016/j.ijheatmasstransfer.2006.02.007
(18) Doyle, M.; Newman, J.; Fuller, T. F. J. Electrochem. Soc. 1993,140, 1526. doi: 10.1149/1.2221597
(19) Das, P. K.; Li, X. G.; Liu, Z. S. Applied Energy 2010, 87, 2785.
(20) Doyle, M.; Newman, J.; Gozdz, A. S.; Schmutz, C. N.;Tarascon, J. M. J. Electrochem. Soc. 1996, 143, 1890. doi: 10.1149/1.1836921
(21) Fuller, T. F.; Doyle, M.; Newman, J. J. Electrochem. Soc. 1994,141, 1. doi: 10.1149/1.2054684
(22) Fan, D.; White, R. E. J. Electrochem. Soc. 1991, 138, 17. doi: 10.1149/1.2085532
(23) Patel, K. K.; Paulser, K. M.; Desilvestro, J. J. Power Sources2003, 122, 144. doi: 10.1016/S0378-7753(03)00399-9
(24) Thovert, J. F.;Wary, F.; Adler, P. M. J. Appl. Phys. 1990, 68,3872. doi: 10.1063/1.346274
(25) Jiang, F. M.; Sousa, A. C. M. Heat and Mass Transfer 2006, 43,479.
(26) Shoshany, Y.; Prialnik, D.; Podolak, M. Icarus 2002, 157,219. doi: 10.1006/icar.2002.6815
(27) Barta, S.; Dieska, P. Kovove Mater. 2002, 40, 99.
(28) Wang, M.;Wang, K.; Pan, N.; Chen, S. Phys. Rev. E 2007, 75,036702.
(29) Xuan, Y. M.; Zhao, K.; Li, Q. Heat Mass Transfer 2010, 46,1039. doi: 10.1007/s00231-010-0687-2
(30) Joshi, A. S.; Grew, K. N.; Izzo, J. R.; Peracchio, A. A.; Chiu, S.W. K. J. Fuel Cell Sci. Technol. 2010, 7, 011006-1. doi: 10.1115/1.3117251
(31) Torquato, S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties; Springer Verlag: Berlin, 2002;p 23.
(32) Zou, Q.; He, X. Phys. Fluids 1997, 9, 1591. doi: 10.1063/1.869307
(33) Wang, J. K.;Wang, M.; Li, Z. X. Int. J. Thermal Sci. 2007, 46,228. doi: 10.1016/j.ijthermalsci.2006.04.012
(34) Ziegler, D. J. Stat. Phys. 1993, 71, 1171. doi: 10.1007/BF01049965
(35) Hoshen, J.; Kopelman, R. Phys. Rev. B 1976, 14, 3438. doi: 10.1103/PhysRevB.14.3438
(36) Kiyohara, K.; Sugino, T.; Asaka, K. J. Chem. Phys. 2010, 132,144705. doi: 10.1063/1.3376611
(37) Thorat, V.; Stephenson, D. E.; Zacharias, N. A.; Zaghib, K.;Harb, J. N.; Wheeler, D. R. J. Power Sources 2009, 188, 592.doi: 10.1016/j.jpowsour.2008.12.032
(38) Promentilla, M. A. B.; Sugiyama, T.; Hitomi, T.; Takeda, N.Cement Concrete Res. 2009, 39, 548. doi: 10.1016/j.cemconres.2009.03.005

[1] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. Chim. Sin., 2017, 33(3): 602-610.
[2] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. Chim. Sin., 2017, 33(2): 270-282.
[3] ZHU Jin-Xiao, LIU Xiao-Dong, XUE Min-Zhao, CHEN Chang-Xin. Phosphorene: Synthesis, Structure, Properties and Device Applications[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2153-2172.
[4] LI Bao-Qing, YUAN Wen-Hui, LI Li. Adsorption of Pb2+ and Cd2+ on Graphene Nanosheets Prepared Using Thermal Exfoliation[J]. Acta Phys. Chim. Sin., 2016, 32(4): 997-1004.
[5] LI Zhi-Guang, MA Xiao-Yan, HONG Qing, GUAN Xing-Hua. Functional Applications of Ordered Honeycomb-Patterned Porous Films Based on the Breath Figure Technique[J]. Acta Phys. Chim. Sin., 2015, 31(3): 393-411.
[6] XING Jian-Dong, JING Fang-Li, CHU Wei, SUN Hong-Li, YU Lei, ZHANG Huan, LUO Shi-Zhong. Improvement of Adsorptive Separation Performance for C2H4/C2H6 Mixture by CeO2 Promoted CuCl/Activated Carbon Adsorbents[J]. Acta Phys. Chim. Sin., 2015, 31(11): 2158-2164.
[7] SONG Han, WANG Na-Na, LI Yue, RUAN Wen-Juan. Synthesis, Characterization and Properties of Terminal Alkynylate Modified Salen-Type Complexes[J]. Acta Phys. Chim. Sin., 2013, 29(11): 2300-2307.
[8] TANG Peng, XIAO Jian-Jian, ZHENG Chao, WANG Shi, CHEN Run-Feng. Graphene-Like Molybdenum Disulfide and Its Application in Optoelectronic Devices[J]. Acta Phys. Chim. Sin., 2013, 29(04): 667-677.
[9] PAN Hui, ZHAO Tian, ZHANG Yu-Dong, ZHANG Zhi-Jun. Preparation, Characterization and Properties of Titania/Graphite Oxide Nanocomposite[J]. Acta Phys. Chim. Sin., 2013, 29(03): 660-666.
[10] ZUO Yi, SONG Wan-Cang, WANG Meng-Li, XU Yong-Hai, WANG Xiang-Sheng, GUO Xin-Wen. Epoxidation of Propylene over Small-Crystal TS-1 Extrudate in a Fixed-Bed Reactor[J]. Acta Phys. Chim. Sin., 2013, 29(01): 183-190.
[11] YANG Dong-Hua, ZHAO Jun-Fu, ZHANG Jun-Liang, DOU Tao, WU Zhong-Hua, CHEN Zhong-Jun. Designed Synthesis and Crystallization of Fe-Al-EU-1 Zeolites Containing Framework-Iron[J]. Acta Phys. Chim. Sin., 2012, 28(03): 720-728.
[12] LIU Jia, GUO Li-Qin, ZHANG Xiao-Hong, RUAN Wen-Juan, ZHU Zhi-Ang. Synthesis, Characterization and Properties of Salen-Type Complexes[J]. Acta Phys. Chim. Sin., 2012, 28(02): 265-272.
[13] LI Ben-Xia, WANG Yan-Fen, LIU Tong-Xuan. Adjustable Synthesis and Visible-Light Responsive Photocatalytic Performance of V2O5·xH2O-BiVO4 Nanocomposites[J]. Acta Phys. Chim. Sin., 2011, 27(12): 2946-2952.
[14] HE Jin-Song, YANG Hong-Wei, GAN Xiao-Ling, CAI Ran, ZHU Song-Ming, YU Yong, LI Jian-Ping, MU Tai-Hua, ZHU Wan-Peng. Energy Characterization of Effect for Ions on the Structure of Water[J]. Acta Phys. Chim. Sin., 2011, 27(11): 2499-2504.
[15] LIU Jian, ZHAO Zhen, WANG Hong-Xuan, DUAN Ai-Jun, JIANG Gui-Yuan. Selective Oxidation Performance of Propane over Supported Vanadium Oxide Catalysts[J]. Acta Phys. Chim. Sin., 2011, 27(11): 2659-2664.