Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (11): 2451-2458    DOI: 10.3866/PKU.WHXB201309041
CATALYSIS AND SURFACE SCIENCE     
Preparation of NiO/CeO2 Catalysts by Solid State Impregnation and Their Application in CO Oxidation
SUN Jing-Fang1, GE Cheng-Yan1, YAO Xiao-Jiang1, CAO Yuan1, ZHANG Lei1, TANG Chang-Jin1, DONG Lin1,2
1 Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China;
2 Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
Download:   PDF(1010KB) Export: BibTeX | EndNote (RIS)      

Abstract  

NiO/CeO2 catalysts with different NiO loadings were prepared by a novel solid state impregnation method. The physical and chemical properties of these catalysts were compared with those of catalysts prepared by traditional wet impregnation method. The catalysts were tested for low temperature catalytic CO oxidation and characterized by X-ray diffraction (XRD), N2 physical adsorption, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), Raman spectrum, and X-ray photoelectron spectroscopy (XPS). CO oxidation results showed that nickel-ceria catalysts were good candidates for low temperature CO oxidation, with complete oxidation achieved at temperatures below 200 ℃. The activity of the catalysts increased with nickel loading, and those prepared using the solid state impregnation method displayed higher activities than those prepared by wet impregnation method at the same nickel loading. TEM, XPS, and H2-TPRresults showed that solid state impregnation increased the dispersion of the nickel species on the surface of catalysts and strengthened the interactions between nickel and cerium, which benefited the reduction of nickel species. Raman results showed that the 0001 concentration of oxygen vacancies in the catalysts could be increased using the solid state impregnation method, likely because of more doped nickel ions in the ceria lattice, which promote the activation of oxygen molecules to facilitate the CO oxidation.



Key wordsNiO/CeO2      CO oxidation      Solid state impregnation      Wet impregnation      Interfacial interaction     
Received: 13 May 2013      Published: 04 September 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21273110), Jiangsu Province Science and Technology Support Program, China (Industrial, BE2011167), and Opening Project Program of the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University), China (201207).

Corresponding Authors: TANG Chang-Jin, DONG Lin     E-mail: tangcj@nju.edu.cn;donglin@nju.edu.cn
Cite this article:

SUN Jing-Fang, GE Cheng-Yan, YAO Xiao-Jiang, CAO Yuan, ZHANG Lei, TANG Chang-Jin, DONG Lin. Preparation of NiO/CeO2 Catalysts by Solid State Impregnation and Their Application in CO Oxidation. Acta Phys. Chim. Sin., 2013, 29(11): 2451-2458.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201309041     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I11/2451

(1) Zou, H. B.; Dong, X. F.; Lin,W. M. Chem. World 2005, 6, 367.[邹汉波, 董新法, 林维明. 化学世界, 2005, 6, 367.]
(2) Grisel, R. J. H.; Nieuwenhuys, B. E. J. Catal. 2001, 199, 48.doi: 10.1006/jcat.2000.3121
(3) Liu, Y.; Meng, M.; Yao, J. S.; Zha, Y. Q. Acta Phys. -Chim. Sin.2007, 23, 641. [刘咏, 孟明, 姚金松, 査宇清. 物理化学学报, 2007, 23, 641.] doi: 10.1016/S1872-1508(07)60041-2
(4) Yu, J.;Wu, G. S.; Mao, D. S.; Lu, G. Z. Acta Phys. -Chim. Sin.2008, 24, 1751. [俞俊, 吴贵升, 毛东森, 卢冠忠. 物理化学学报, 2008, 24, 1751.] doi: 10.1016/S1872-1508(08)60071-6
(5) Kaspar, J.; Fornasiero, P.; Graziani, M. Catal. Today 1999, 50 (2), 285. doi: 10.1016/S0920-5861(98)00510-0
(6) Shan,W. J.; Luo, M. F.; Ying, P. L.; Shen,W. J.; Li, C. Appl. Catal. A: Gen. 2003, 246, 1. doi: 10.1016/S0926-860X(02)00659-2
(7) Agula, B.; Deng, Q. F.; Jia, M. L.; Liu, Y. P.; Zhaorigetu, B.;Yuan, Z. Y. Reac. Kinet. Mech. Cat. 2011, 103, 101. doi: 10.1007/s11144-011-0296-1
(8) Zhang, Y.W.;Wang, Z. H.; Zhou, J. H.; Liu, J. Z.; Cen, K. F.Int. J. Hydrog. Energy 2009, 34, 5637. doi: 10.1016/j.ijhydene.2009.05.061
(9) Yisup, N.; Cao, Y.; Feng,W. L.; Dai,W. L.; Fan, K. N. Catal. Lett. 2005, 99, 207. doi: 10.1007/s10562-005-2121-9
(10) Ertl, G.; Knozinger, H.; Schuth, F.;Weitkamp, J. Handbook of Heterogenous Catalysis;Wiley-VCH:Weinheim, Germany,2008.
(11) Jobbagy, M.; Marino, F.; Schonbrod, B.; Baronetti, G.; Laborde,M. Chem. Mater. 2006, 18, 1945. doi: 10.1021/cm052437h
(12) Schwarz, J. A.; Contescu, C.; Contescu, A. Chem. Rev. 1995, 95,477. doi: 10.1021/cr00035a002
(13) Wang, Y. M.;Wu, Z. Y.;Wang, H. L.; Zhu, J. H. Adv. Funct. Meter. 2006, 16, 2374.
(14) Li, X. B.; Quek, X. Y.; Michel Ligthart, D. A. J.; Guo, M. L.;Zhang, Y.; Li, C.; Yang, Q. H.; Hensen, E. J. M. Appl. Catal. B: Environ. 2012, 123, 424.
(15) Medina-Mendoza, A. K.; Cortés-Jácome, M. A.; Toledo-Antonio, J. A.; Angeles-Chávez, C.; López-Salinas, E.;Cuauhtémoc-López, I.; Barrera, M. C.; Escobar, J.; Navarrete,J.; Hernández, I. Appl. Catal. B: Environ. 2011, 106, 14.
(16) Lai, S.W.; Chung, D. D. J. Mater. Sci. 1994, 29, 3128. doi: 10.1007/BF00356655
(17) Liu, J.W.; Zheng, Z. X.;Wang, J. M.;Wu, Y. C.; Tang,W. M.;Lu, J. J. Alloy. Compd. 2008, 465, 239. doi: 10.1016/j.jallcom.2007.10.055
(18) de Jongh, P. E.;Wagemans, R.W. P.; Eggenhuisen, T. M.;Dauvillier, B. S.; Radstake, P. B.; Meeldijk, J. D.; Geus, J.W.;de Jong, K. P. Chem. Mater. 2007, 19, 6052. doi: 10.1021/cm702205v
(19) Tang, C. J.; Zhang, H. L.; Sun, C. Z.; Li, J. C.; Qi, L.; Quan, Y.J.; Gao, F.; Dong, L. Catal. Commun. 2011, 12, 1075. doi: 10.1016/j.catcom.2011.03.031
(20) Tang, C. J.; Sun, J. F.; Yao, X. J.; Cao, Y.; Liu, L. C.; Ge, C. Y.;Gao, F.; Dong, L. Appl. Catal. B: Environ. 2013, doi: 10.1016/j.apcatb.2013.05.060.
(21) Mohamed, M. M.; Salama, T. M.; Othman, A. I.; El-Shobaky, G.A. Appl. Catal. A: Gen. 2005, 279, 23. doi: 10.1016/j.apcata.2004.09.040
(22) Barrio, L.; Kubacka, A.; Zhou, G.; Estrella, M.; Martínez-Arias,A.; Hanson, J.C.; Fernández-García, M.; Rodriguez, J. A.J. Phys. Chem. C 2010, 114, 12689. doi: 10.1021/jp103958u
(23) Guillén-Hurtado, N.; Atribak, I.; Bueno-Lopez, A.; García-García, A. J. Mol. Catal. A: Chem. 2010, 323, 52. doi: 10.1016/j.molcata.2010.03.010
(24) Li, Y.; Zhang, B. C.; Tang, X. L.; Xu, Y. D.; Shen,W. J. Catal. Commun. 2006, 7, 380. doi: 10.1016/j.catcom.2005.12.002
(25) Wang, Y.; Zhu, A. M.; Zhang, Y. Z.; Au, C. T.; Yang, X. F. Shi,C. Appl. Catal. B: Environ. 2008, 1, 141.
(26) Wu, Z. L.; Li, M. J.; Howe, J. Langmuir 2010, 26 (21), 16595.doi: 10.1021/la101723w
(27) Du, X. J.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Zhang, J. P.J. Phys. Chem. C 2012, 116, 10009. doi: 10.1021/jp300543r
(28) Lin, J.; Li, L.; Huang, Y. Q.; Zhang,W. S.;Wang, X. D.;Wang,A. Q.; Zhang, T. J. Phys. Chem. C 2011, 115, 16509. doi: 10.1021/jp204288h
(29) Chen, C. S.; Lin, J. H.; You, J. H.; Yang, K. H. J. Phys. Chem. A2010, 114, 3773. doi: 10.1021/jp904434e
(30) Alifanti, M.; Baps, B. Blangenois, N.; Naud, J.; Grange, P.;Delmon, B. Chem. Mater. 2003, 15, 395. doi: 10.1021/cm021274j
(31) Yao, X. J.; Yu, Q.; Ji, Z. Y.; Lv, Y. Y.; Cao, Y.; Jin, C. T.; Gao, F.;Dong, L. Appl. Catal. B: Environ. 2013, 130-131, 293.
(32) Liu, X.W.; Zhou, K.;Wang, L.;Wang, B.; Li, Y. J. J. Am. Chem. Soc. 2009, 131, 3140. doi: 10.1021/ja808433d
(33) Luo, M. F.; Song, Y. P.; Lu, J. Q.;Wang, X. Y.; Pu, Z. Y. J. Phys. Chem. C 2007, 111, 12686. doi: 10.1021/jp0733217

[1] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1462-1473.
[2] CHEN Mingshu. Toward Understanding the Nature of the Active Sites and Structure-Activity Relationships of Heterogeneous Catalysts by Model Catalysis Studies[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2424-2437.
[3] GU Yong-Bing, CAI Qiu-Xia, CHEN Xian-Lang, ZHUANG Zhen-Zhan, ZHOU Hu, ZHUANG Gui-Lin, ZHONG Xing, MEI Dong-Hai, WANG Jian-Guo. Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1674-1680.
[4] JIA Yong-Chang, WANG Shu-Yuan, MENG Lian, LU Ji-Qing, LUO Meng-Fei. Effects of Zr Addition on CO and CH4 Catalytic Oxidation over PdO/PdO/Ce1-xPdxO2-δ Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1801-1809.
[5] HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long. Structure-Sensitivity of Au Catalysis[J]. Acta Phys. Chim. Sin., 2016, 32(1): 48-60.
[6] LI Xiao-Kun, MA Dong-Dong, ZHENG Yan-Ping, ZHANG Hong, DING Ding, CHEN Ming-Shu, WAN Hui-Lin. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Phys. Chim. Sin., 2015, 31(9): 1753-1760.
[7] LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie. Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(2): 382-388.
[8] LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun. Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation[J]. Acta Phys. Chim. Sin., 2014, 30(1): 129-134.
[9] LI Na, CHEN Qiu-Yan, LUO Meng-Fei, LU Ji-Qing. Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts[J]. Acta Phys. Chim. Sin., 2013, 29(05): 1055-1062.
[10] WANG Fang, WANG Cai-Hong, LI Da-Zhi. Novel Method of Controlling Formation of Hot-Spot over Gold Catalysts for CO Oxidation[J]. Acta Phys. Chim. Sin., 2012, 28(06): 1455-1460.
[11] DONG Hua-Qing, PAN Xi, XIE Qin, MENG Qiang-Qiang, GAO Jian-Rong, WANG Jian-Guo. CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays[J]. Acta Phys. Chim. Sin., 2012, 28(01): 44-50.
[12] YANG Zhi-Qiang, MAO Dong-Sen, WU Ren-Chun, YU Jun, WANG Qian. Preparation of CuO-Ce0.6Zr0.4O2 by Microwave Heating Decomposition and Its Catalytic Property for CO Oxidation[J]. Acta Phys. Chim. Sin., 2011, 27(05): 1163-1168.
[13] HU Jian-Ping, WANG Jun, TANG Dian-Yong, FU Qin-Chao, ZHANG Yuan-Qin. Reaction Mechanisms of CO Oxidation Catalyzed by Binary Copper Group Cluster Anions[J]. Acta Phys. Chim. Sin., 2011, 27(02): 329-336.
[14] YANG Zhi-Qiang, MAO Dong-Sen, GUO Qiang-Sheng, GU Lei. Effect of Preparation Method on the Activity of CuO/CeO2-ZrO2 Catalysts for Low Temperature CO Oxidation[J]. Acta Phys. Chim. Sin., 2010, 26(12): 3278-3284.
[15] LIU Yu-Liang, YOU Cui-Rong, LI Yang, HE Tao, ZHANG Xiang-Qin, SUO Zhang-Huai. Preparation of Au@TiO2 Catalyst Using Escherichia Coil as the Template and Its Oxidation Reaction Activity toward CO[J]. Acta Phys. Chim. Sin., 2010, 26(09): 2455-2460.