Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2013,Vol.29>> Issue(11)>> 2451-2458     doi: 10.3866/PKU.WHXB201309041         中文摘要
CATALYSIS AND SURFACE SCIENCE
Preparation of NiO/CeO2 Catalysts by Solid State Impregnation and Their Application in CO Oxidation
SUN Jing-Fang1, GE Cheng-Yan1, YAO Xiao-Jiang1, CAO Yuan1, ZHANG Lei1, TANG Chang-Jin1, DONG Lin1,2
1 Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China;
2 Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, P. R. China
Full text: PDF (1010KB) Export: BibTeX | EndNote (RIS)

NiO/CeO2 catalysts with different NiO loadings were prepared by a novel solid state impregnation method. The physical and chemical properties of these catalysts were compared with those of catalysts prepared by traditional wet impregnation method. The catalysts were tested for low temperature catalytic CO oxidation and characterized by X-ray diffraction (XRD), N2 physical adsorption, transmission electron microscopy (TEM), H2 temperature-programmed reduction (H2-TPR), Raman spectrum, and X-ray photoelectron spectroscopy (XPS). CO oxidation results showed that nickel-ceria catalysts were good candidates for low temperature CO oxidation, with complete oxidation achieved at temperatures below 200 ℃. The activity of the catalysts increased with nickel loading, and those prepared using the solid state impregnation method displayed higher activities than those prepared by wet impregnation method at the same nickel loading. TEM, XPS, and H2-TPRresults showed that solid state impregnation increased the dispersion of the nickel species on the surface of catalysts and strengthened the interactions between nickel and cerium, which benefited the reduction of nickel species. Raman results showed that the 0001 concentration of oxygen vacancies in the catalysts could be increased using the solid state impregnation method, likely because of more doped nickel ions in the ceria lattice, which promote the activation of oxygen molecules to facilitate the CO oxidation.



Keywords: NiO/CeO2   CO oxidation   Solid state impregnation   Wet impregnation   Interfacial interaction  
Received: 2013-05-13 Accepted: 2013-09-04 Publication Date (Web): 2013-09-04
Corresponding Authors: TANG Chang-Jin, DONG Lin Email: tangcj@nju.edu.cn;donglin@nju.edu.cn

Fund: The project was supported by the National Natural Science Foundation of China (21273110), Jiangsu Province Science and Technology Support Program, China (Industrial, BE2011167), and Opening Project Program of the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University), China (201207).

Cite this article: SUN Jing-Fang, GE Cheng-Yan, YAO Xiao-Jiang, CAO Yuan, ZHANG Lei, TANG Chang-Jin, DONG Lin. Preparation of NiO/CeO2 Catalysts by Solid State Impregnation and Their Application in CO Oxidation[J]. Acta Phys. -Chim. Sin., 2013,29 (11): 2451-2458.    doi: 10.3866/PKU.WHXB201309041

(1) Zou, H. B.; Dong, X. F.; Lin,W. M. Chem. World 2005, 6, 367.[邹汉波, 董新法, 林维明. 化学世界, 2005, 6, 367.]
(2) Grisel, R. J. H.; Nieuwenhuys, B. E. J. Catal. 2001, 199, 48.doi: 10.1006/jcat.2000.3121
(3) Liu, Y.; Meng, M.; Yao, J. S.; Zha, Y. Q. Acta Phys. -Chim. Sin.2007, 23, 641. [刘咏, 孟明, 姚金松, 査宇清. 物理化学学报, 2007, 23, 641.] doi: 10.1016/S1872-1508(07)60041-2
(4) Yu, J.;Wu, G. S.; Mao, D. S.; Lu, G. Z. Acta Phys. -Chim. Sin.2008, 24, 1751. [俞俊, 吴贵升, 毛东森, 卢冠忠. 物理化学学报, 2008, 24, 1751.] doi: 10.1016/S1872-1508(08)60071-6
(5) Kaspar, J.; Fornasiero, P.; Graziani, M. Catal. Today 1999, 50 (2), 285. doi: 10.1016/S0920-5861(98)00510-0
(6) Shan,W. J.; Luo, M. F.; Ying, P. L.; Shen,W. J.; Li, C. Appl. Catal. A: Gen. 2003, 246, 1. doi: 10.1016/S0926-860X(02)00659-2
(7) Agula, B.; Deng, Q. F.; Jia, M. L.; Liu, Y. P.; Zhaorigetu, B.;Yuan, Z. Y. Reac. Kinet. Mech. Cat. 2011, 103, 101. doi: 10.1007/s11144-011-0296-1
(8) Zhang, Y.W.;Wang, Z. H.; Zhou, J. H.; Liu, J. Z.; Cen, K. F.Int. J. Hydrog. Energy 2009, 34, 5637. doi: 10.1016/j.ijhydene.2009.05.061
(9) Yisup, N.; Cao, Y.; Feng,W. L.; Dai,W. L.; Fan, K. N. Catal. Lett. 2005, 99, 207. doi: 10.1007/s10562-005-2121-9
(10) Ertl, G.; Knozinger, H.; Schuth, F.;Weitkamp, J. Handbook of Heterogenous Catalysis;Wiley-VCH:Weinheim, Germany,2008.
(11) Jobbagy, M.; Marino, F.; Schonbrod, B.; Baronetti, G.; Laborde,M. Chem. Mater. 2006, 18, 1945. doi: 10.1021/cm052437h
(12) Schwarz, J. A.; Contescu, C.; Contescu, A. Chem. Rev. 1995, 95,477. doi: 10.1021/cr00035a002
(13) Wang, Y. M.;Wu, Z. Y.;Wang, H. L.; Zhu, J. H. Adv. Funct. Meter. 2006, 16, 2374.
(14) Li, X. B.; Quek, X. Y.; Michel Ligthart, D. A. J.; Guo, M. L.;Zhang, Y.; Li, C.; Yang, Q. H.; Hensen, E. J. M. Appl. Catal. B: Environ. 2012, 123, 424.
(15) Medina-Mendoza, A. K.; Cortés-Jácome, M. A.; Toledo-Antonio, J. A.; Angeles-Chávez, C.; López-Salinas, E.;Cuauhtémoc-López, I.; Barrera, M. C.; Escobar, J.; Navarrete,J.; Hernández, I. Appl. Catal. B: Environ. 2011, 106, 14.
(16) Lai, S.W.; Chung, D. D. J. Mater. Sci. 1994, 29, 3128. doi: 10.1007/BF00356655
(17) Liu, J.W.; Zheng, Z. X.;Wang, J. M.;Wu, Y. C.; Tang,W. M.;Lu, J. J. Alloy. Compd. 2008, 465, 239. doi: 10.1016/j.jallcom.2007.10.055
(18) de Jongh, P. E.;Wagemans, R.W. P.; Eggenhuisen, T. M.;Dauvillier, B. S.; Radstake, P. B.; Meeldijk, J. D.; Geus, J.W.;de Jong, K. P. Chem. Mater. 2007, 19, 6052. doi: 10.1021/cm702205v
(19) Tang, C. J.; Zhang, H. L.; Sun, C. Z.; Li, J. C.; Qi, L.; Quan, Y.J.; Gao, F.; Dong, L. Catal. Commun. 2011, 12, 1075. doi: 10.1016/j.catcom.2011.03.031
(20) Tang, C. J.; Sun, J. F.; Yao, X. J.; Cao, Y.; Liu, L. C.; Ge, C. Y.;Gao, F.; Dong, L. Appl. Catal. B: Environ. 2013, doi: 10.1016/j.apcatb.2013.05.060.
(21) Mohamed, M. M.; Salama, T. M.; Othman, A. I.; El-Shobaky, G.A. Appl. Catal. A: Gen. 2005, 279, 23. doi: 10.1016/j.apcata.2004.09.040
(22) Barrio, L.; Kubacka, A.; Zhou, G.; Estrella, M.; Martínez-Arias,A.; Hanson, J.C.; Fernández-García, M.; Rodriguez, J. A.J. Phys. Chem. C 2010, 114, 12689. doi: 10.1021/jp103958u
(23) Guillén-Hurtado, N.; Atribak, I.; Bueno-Lopez, A.; García-García, A. J. Mol. Catal. A: Chem. 2010, 323, 52. doi: 10.1016/j.molcata.2010.03.010
(24) Li, Y.; Zhang, B. C.; Tang, X. L.; Xu, Y. D.; Shen,W. J. Catal. Commun. 2006, 7, 380. doi: 10.1016/j.catcom.2005.12.002
(25) Wang, Y.; Zhu, A. M.; Zhang, Y. Z.; Au, C. T.; Yang, X. F. Shi,C. Appl. Catal. B: Environ. 2008, 1, 141.
(26) Wu, Z. L.; Li, M. J.; Howe, J. Langmuir 2010, 26 (21), 16595.doi: 10.1021/la101723w
(27) Du, X. J.; Zhang, D. S.; Shi, L. Y.; Gao, R. H.; Zhang, J. P.J. Phys. Chem. C 2012, 116, 10009. doi: 10.1021/jp300543r
(28) Lin, J.; Li, L.; Huang, Y. Q.; Zhang,W. S.;Wang, X. D.;Wang,A. Q.; Zhang, T. J. Phys. Chem. C 2011, 115, 16509. doi: 10.1021/jp204288h
(29) Chen, C. S.; Lin, J. H.; You, J. H.; Yang, K. H. J. Phys. Chem. A2010, 114, 3773. doi: 10.1021/jp904434e
(30) Alifanti, M.; Baps, B. Blangenois, N.; Naud, J.; Grange, P.;Delmon, B. Chem. Mater. 2003, 15, 395. doi: 10.1021/cm021274j
(31) Yao, X. J.; Yu, Q.; Ji, Z. Y.; Lv, Y. Y.; Cao, Y.; Jin, C. T.; Gao, F.;Dong, L. Appl. Catal. B: Environ. 2013, 130-131, 293.
(32) Liu, X.W.; Zhou, K.;Wang, L.;Wang, B.; Li, Y. J. J. Am. Chem. Soc. 2009, 131, 3140. doi: 10.1021/ja808433d
(33) Luo, M. F.; Song, Y. P.; Lu, J. Q.;Wang, X. Y.; Pu, Z. Y. J. Phys. Chem. C 2007, 111, 12686. doi: 10.1021/jp0733217

1. GU Yong-Bing, CAI Qiu-Xia, CHEN Xian-Lang, ZHUANG Zhen-Zhan, ZHOU Hu, ZHUANG Gui-Lin, ZHONG Xing, MEI Dong-Hai, WANG Jian-Guo.Theoretical Insights into Role of Interface for CO Oxidation on Inverse Al2O3/Au(111) Catalysts[J]. Acta Phys. -Chim. Sin., 2016,32(7): 1674-1680
2. JIA Yong-Chang, WANG Shu-Yuan, MENG Lian, LU Ji-Qing, LUO Meng-Fei.Effects of Zr Addition on CO and CH4 Catalytic Oxidation over PdO/PdO/Ce1-xPdxO2-δ Catalyst[J]. Acta Phys. -Chim. Sin., 2016,32(7): 1801-1809
3. HUANG Wei-Xin, QIAN Kun, WU Zong-Fang, CHEN Shi-Long.Structure-Sensitivity of Au Catalysis[J]. Acta Phys. -Chim. Sin., 2016,32(1): 48-60
4. LÜ Yong-Ge, LI Yong, TA Na, SHEN Wen-Jie.Morphology-Controlled Synthesis of Co3O4 Nanocubes and Their Catalytic Performance in CO Oxidation[J]. Acta Phys. -Chim. Sin., 2014,30(2): 382-388
5. LIANG Qian, ZHAO Zhen, LIU Jian, WEI Yue-Chang, JIANG Gui-Yuan, DUAN Ai-Jun.Pd Nanoparticles Deposited on Metal-Organic Framework of MIL-53(Al):an Active Catalyst for CO Oxidation[J]. Acta Phys. -Chim. Sin., 2014,30(1): 129-134
6. SUN Yi-Fei, LI Guang-Chao, PAN Xin-Di, HUANG Chuan-Jing, WENG Wei-Zheng, WAN Hui-Lin.Oxidative Dehydrogenation of Propane to Propylene over Mesoporous Alumina Supported Ni-Co Oxide Catalysts[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2135-2140
7. WANG Fang, WANG Cai-Hong, LI Da-Zhi.Novel Method of Controlling Formation of Hot-Spot over Gold Catalysts for CO Oxidation[J]. Acta Phys. -Chim. Sin., 2012,28(06): 1455-1460
8. YE Qing, HUO Fei-Fei, YAN Li-Na, WANG Juan, CHENG Shui-Yuan, KANG Tian-Fang.Highly Active Au/α-MnO2 Catalysts for the Low-Temperature Oxidation of Carbon Monoxide and Benzene[J]. Acta Phys. -Chim. Sin., 2011,27(12): 2872-2880
9. YANG Zhi-Qiang, MAO Dong-Sen, WU Ren-Chun, YU Jun, WANG Qian.Preparation of CuO-Ce0.6Zr0.4O2 by Microwave Heating Decomposition and Its Catalytic Property for CO Oxidation[J]. Acta Phys. -Chim. Sin., 2011,27(05): 1163-1168
10. HU Jian-Ping, WANG Jun, TANG Dian-Yong, FU Qin-Chao, ZHANG Yuan-Qin.Reaction Mechanisms of CO Oxidation Catalyzed by Binary Copper Group Cluster Anions[J]. Acta Phys. -Chim. Sin., 2011,27(02): 329-336
11. YANG Zhi-Qiang, MAO Dong-Sen, GUO Qiang-Sheng, GU Lei.Effect of Preparation Method on the Activity of CuO/CeO2-ZrO2 Catalysts for Low Temperature CO Oxidation[J]. Acta Phys. -Chim. Sin., 2010,26(12): 3278-3284
12. LIU Yu-Liang, YOU Cui-Rong, LI Yang, HE Tao, ZHANG Xiang-Qin, SUO Zhang-Huai.Preparation of Au@TiO2 Catalyst Using Escherichia Coil as the Template and Its Oxidation Reaction Activity toward CO[J]. Acta Phys. -Chim. Sin., 2010,26(09): 2455-2460
13. XIAO Xiao-Yan, LU Ji-Qing, SU Xiao-Wen, GUO Ming, LUO Meng-Fei.PdO-CeO2 Composite Catalysts for Low Temperature CO Oxidation[J]. Acta Phys. -Chim. Sin., 2009,25(03): 561-566
14. WEN Li; LIN Zhong-Yu; ZHOU Jian-Zhang; GU Ping-Ying; FU Jin-Kun; LIN Zhong-Hua.Au/γ-Al2O3 Catalyst Prepared from Octanethiolate Monolayer Protected Au Nanoparticles for CO Oxidation[J]. Acta Phys. -Chim. Sin., 2008,24(04): 581-586
15. ZHAN Ying-Ying; CAI Guo-Hui; ZHENG Yong; SHEN Xiao-Nv; ZHENG Ying; WEI Ke-Mei.Synthesis of High Surface Area Silicon Carbide and Its Application in CO Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2008,24(01): 171-175
16. TIAN Na;CHEN Wei;SUN Shi-Gang.Spectroscopic Characterization and Electrocatalytic Properties of Core-Shell Au-Pt Nanoparticles[J]. Acta Phys. -Chim. Sin., 2005,21(01): 74-78
17. Wang Shu-Rong;Wu Shi-Hua;Shi Juan;Zheng Xiu-Cheng;Huang Wei-Ping.Preparation and Catalytic Activity of Au/SnO2 for Low-temperature CO Oxidation[J]. Acta Phys. -Chim. Sin., 2004,20(04): 428-431
18. Zhang Min;Jin Zhen-Sheng;Wang Shou-Bin;Zhang Shun-Li;Zhang Zhi-Jun.The Photocatalytic Enhancement Effect of CO on Pd/TiO2[J]. Acta Phys. -Chim. Sin., 2003,19(02): 100-104
19. Zeng Jian-Qing, Zhang Jing-Cheng, Zhong Bing.Monte Carlo Simulation of CO Oxidation Reaction on Fractal Surface[J]. Acta Phys. -Chim. Sin., 1999,15(06): 555-559
20. Liu Ying-Jun, Zhang Ji-Jun, Li Neng, Lin Bing-Xiong.The Effect of CO2 on Catalytic Activity of Cu-Ce-O Complex Oxides for CO Oxidation[J]. Acta Phys. -Chim. Sin., 1999,15(02): 97-100
21. Zhang Ji-Jun, Liu Ying-Jun, Li Neng, Lin Bing-Xiong.Synergistic Effect between CuO and CeO2 for CO Oxidation[J]. Acta Phys. -Chim. Sin., 1999,15(01): 15-21
22. Fu Jin-Kun, Liu Yue-Ying, Hu Rong-Zong, Zeng Jin-Long, Xu Pian-Pian, Lin Zhong-Yu, Yao Bing-Xin, Weng Cheng-Zhou.Preparation of Highly Dispersive Supported Gold Catalyst by Microbial Reduction Method[J]. Acta Phys. -Chim. Sin., 1998,14(09): 769-771
23. Ma Zhi, Qin Yong-Ning, Qi Xiao-Zhou, Liang Zhen-Cheng, He Fei.Studies on Prepartion and CO Oxidation Activity of LaSrBO4 Compound[J]. Acta Phys. -Chim. Sin., 1998,14(05): 453-457
24. Zhou Ren-Xian, Chen Fang, Jiang Xiao-Yuan, Zheng Xiao-Ming.The Dispersed States of Manganese Species on Mn-O/ZrO2 Catalysts and its Influents on the Catalytic Performance[J]. Acta Phys. -Chim. Sin., 1998,14(02): 178-180
25. Zeng Jian-Qing,Zhang Jing-Cheng,Guo Xiang-Yun,Zhong Bing.The Influence of Diffusion on the First Order Phase Transition Point of CO Oxidation:Monte Carlo Simulation[J]. Acta Phys. -Chim. Sin., 1997,13(02): 183-187
26. Zhou Ren-Xian,Jiang Xiao-Yuan,Lv Guang-Lie,Zheng Xiao-Ming.Desorption of Surface Oxygen on Cu/ZrO2-γ-Al2O3 and its Influence on the Catalytic Performance[J]. Acta Phys. -Chim. Sin., 1997,13(02): 128-133
27. Li Xu-Yuan,Zhang Zi-Ping,Ma Jian-Tai,Zhu Zong-Zhen,Meng Yi-Min.The Catalytic Activity for CO Oxidation and Characterization of Perovskite-type Oxides Catalysts La1+X/2Sr1-x/2Co1-xCuxO3[J]. Acta Phys. -Chim. Sin., 1996,12(06): 502-507
28. ZHOU Ren-Xian, WEI Jian-Gen, ZHENG Xiao-Ming, WU Hong-Li, LV Guang-Lie.Study on Phase Structure, Pore Structure and catalytic Property of Out-layer ZrO2 on Alumina Base[J]. Acta Phys. -Chim. Sin., 1995,11(12): 1097-1100
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top