Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (11): 2308-2312    DOI: 10.3866/PKU.WHXB201309042
Density Functional Theory Study of the Gas-Phase Reaction of U+ with CO2
ZENG Xiu-Lin1,2, HUANG Shan-Qi-Song2, JU Xue-Hai2
1 Department of Chemistry and Chemical Engineering, Huainan Normal University, Huainan 232001, Anhui Province, P. R. China;
2 Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
Download:   PDF(611KB) Export: BibTeX | EndNote (RIS)      


The gas-phase reaction of U+ with CO2 was investigated with B3LYP density functional theory (DFT) in conjunction with the relativistic effective core potential (ECP) of the SDD basis sets for Uand the 6-311 + G(d) basis set for C and O. The potential energy surfaces (PESs) of the reaction system were explored in detail for both doublet and quartet spin states. The geometries of reactants, intermediates, transition states, and products in the two reaction pathways were fully optimized. The reaction mechanism was analyzed using"two-state reactivity (TSR)."The calculations demonstrate that the reaction preferentially involves the high-spin state entrance channel and the low-spin state exit channel. The spin multiplicity transition from the quartet state to the doublet state enables the reaction system to find a lower energy pathway.

Key wordsReaction mechanism      Density functional theory      Relativistic effective core potential      Potential energy surface      Spin state     
Received: 15 May 2013      Published: 04 September 2013
MSC2000:  O641  

The project was supported by the National Natural Science Foundation of China (21101070).

Corresponding Authors: JU Xue-Hai     E-mail:
Cite this article:

ZENG Xiu-Lin, HUANG Shan-Qi-Song, JU Xue-Hai. Density Functional Theory Study of the Gas-Phase Reaction of U+ with CO2. Acta Phys. Chim. Sin., 2013, 29(11): 2308-2312.

URL:     OR

(1) Gagliardi, L.; Roos, B. O. Nature 2005, 433, 848. doi: 10.1038/nature03249
(2) Tu, Z. Y.; Yang, D. D.;Wang, F.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28, 1707. [涂喆研, 杨冬冬, 王繁, 李象远. 物理化学学报, 2012, 28, 1707.] doi: 10.3866/PKU.WHXB201205111
(3) Morss, L. R.; Edelstein, N. M.; Fuger, J. The Chemistry of the Actinide and Transactinide Elements; Springer-Verlag: NewYork, 2006; p 65.
(4) Meskaldji, S.; Zaiter, A.; Belkhiri, L.; Boucekkine, A. Theor. Chem. Acc. 2012, 131, 1151. doi: 10.1007/s00214-012-1151-9
(5) Roos, B. O.; Malmqvist, P. A.; Gagliardi, L. J. Am. Chem. Soc.2006, 128, 17000. doi: 10.1021/ja066615z
(6) Baichi, M.; Chatillon, C.; Ducros, G.; Froment, K. J. Nucl. Mater. 2006, 349, 57. doi: 10.1016/j.jnucmat.2005.10.001
(7) Tiferet, E.; Zalkind, S.; Mintz, M. H.; Jacob, I.; Shamir, N. Surf. Sci. 2007, 601, 936. doi: 10.1016/j.susc.2006.11.033
(8) Bazley, S. G.; Nunney, T. S.; Mormiche, C.; Hayden, B. E. Appl. Surf. Sci. 2008, 254, 6376. doi: 10.1016/j.apsusc.2008.03.177
(9) Shuai, M.; Hu, H.;Wang, X.; Zhao, P.; Tian, A. J. Mol. Struct.-Theochem 2001, 536, 269. doi: 10.1016/S0166-1280(00)00720-X
(10) Dholabhai, P. P.; Ray, A. K. J. Alloy. Compd. 2007, 445, 356.
(11) Carley, A. F.; Nevitt, P.; Roussel, P. J. Alloy. Compd. 2008, 448,355. doi: 10.1016/j.jallcom.2007.05.028
(12) Mintz, M. H.; Shamir, N. Appl. Surf. Sci. 2005, 252, 633. doi: 10.1016/j.apsusc.2005.02.077
(13) Mclean,W.; Colmenares, C. A.; Smith, R. L.; Somorjai, G. A.Phys. Rev. B 1983, 87, 8.
(14) Gouder, T.; Colmenares, C. A.; Naegele, J. R.; Spirlet, J. C.;Verbist, J. Surf. Sci. 1992, 264, 354. doi: 10.1016/0039-6028(92)90191-8
(15) Koyanagi, G. K.; Bohme, D. K. J. Phys. Chem. A 2006, 110,1232. doi: 10.1021/jp0526602
(16) Fiedler, A.; Schroer, D.; Zummack,W.; Schwarz, H. Inorg. Chim. Acta 1997, 259, 227. doi: 10.1016/S0020-1693(97)05450-9
(17) Smith, K. M.; Poli, R.; Harvey, J. N. Chemistry 2001, 8, 1679.
(18) Armentrout, P. B. Science 1991, 251, 175. doi: 10.1126/science.251.4990.175
(19) Liu, L. L.;Wang, Y. C. Acta Phys. -Chim. Sin. 2010, 26, 441.[刘玲玲, 王永成. 物理化学学报, 2010, 26, 441.] doi: 10.3866/PKU.WHXB20100218
(20) Zeng, X. L.; Ju, X. H.; Xu, S. Y. Adv. Mater. Res. 2012, 550,2810.
(21) Zeng, X. L.; Xu, S. Y.; Ju, X. H. Chin. J. Chem. Phys. 2013, 26,51. doi: 10.1063/1674-0068/26/01/51-53
(22) Zeng, X. L.; Huang, S. Q.; Ju, X. H. J. Radioanal. Nucl. Chem.2013, doi: 10.1007/s10967-013- 2442-x
(23) Lee, C.; Yang,W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
(24) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
(25) Yang, X. Y.;Wang, Y. C.; Geng, Z. Y.; Liu, Z. Y.;Wang, H. Q.J. Mol. Struct. -Theochem 2007, 807, 49. doi: 10.1016/j.theochem.2006.12.017
(26) Wang, Y. C.; Yang, X. Y.; Geng, Z. Y.; Liu, Z. Y. Chem. Phys. Lett. 2006, 431, 39. doi: 10.1016/j.cplett.2006.09.035
(27) Leininger, T.; Stoll, H.; Dolg, M.; Schwerdtfeger, P.; Nicklass,A. J. Chem. Phys. 1996, 105, 1052. doi: 10.1063/1.471950
(28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
(29) Sodupe, M.; Branchadell, V.; Rosi, M.; Bausehllcher, C.W.J. Phys. Chem. A 1997, 101, 7854. doi: 10.1021/jp9711252
(30) Yoshizawa, K.; Shiota, Y.; Yamabe, T. J. Am. Chem. Soc. 2006,128, 9873. doi: 10.1021/ja061604r
(31) Gracia, L.; Sambrano, L. R.; Safont, V. S.; Calatayud, M.;Beltran, A.; Andres, J. J. Phys. Chem. A 2003, 107, 3107. doi: 10.1021/jp0222696
(32) Gracia, L.; Andres, J.; Safont, V. S.; Beltran, A. Organometallics2004, 23, 730. doi: 10.1021/om0342098

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[7] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[8] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1399-1410.
[9] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[10] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.
[11] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1085-1107.
[12] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1043-1050.
[13] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1010-1016.
[14] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(4): 769-779.
[15] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Phys. Chim. Sin., 2017, 33(3): 530-538.