Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (11): 2308-2312    DOI: 10.3866/PKU.WHXB201309042
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Density Functional Theory Study of the Gas-Phase Reaction of U+ with CO2
ZENG Xiu-Lin1,2, HUANG Shan-Qi-Song2, JU Xue-Hai2
1 Department of Chemistry and Chemical Engineering, Huainan Normal University, Huainan 232001, Anhui Province, P. R. China;
2 Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
Download:   PDF(611KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The gas-phase reaction of U+ with CO2 was investigated with B3LYP density functional theory (DFT) in conjunction with the relativistic effective core potential (ECP) of the SDD basis sets for Uand the 6-311 + G(d) basis set for C and O. The potential energy surfaces (PESs) of the reaction system were explored in detail for both doublet and quartet spin states. The geometries of reactants, intermediates, transition states, and products in the two reaction pathways were fully optimized. The reaction mechanism was analyzed using"two-state reactivity (TSR)."The calculations demonstrate that the reaction preferentially involves the high-spin state entrance channel and the low-spin state exit channel. The spin multiplicity transition from the quartet state to the doublet state enables the reaction system to find a lower energy pathway.



Key wordsReaction mechanism      Density functional theory      Relativistic effective core potential      Potential energy surface      Spin state     
Received: 15 May 2013      Published: 04 September 2013
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (21101070).

Corresponding Authors: JU Xue-Hai     E-mail: xhju@mail.njust.edu.cn
Cite this article:

ZENG Xiu-Lin, HUANG Shan-Qi-Song, JU Xue-Hai. Density Functional Theory Study of the Gas-Phase Reaction of U+ with CO2. Acta Phys. -Chim. Sin., 2013, 29(11): 2308-2312.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201309042     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I11/2308

(1) Gagliardi, L.; Roos, B. O. Nature 2005, 433, 848. doi: 10.1038/nature03249
(2) Tu, Z. Y.; Yang, D. D.;Wang, F.; Li, X. Y. Acta Phys. -Chim. Sin. 2012, 28, 1707. [涂喆研, 杨冬冬, 王繁, 李象远. 物理化学学报, 2012, 28, 1707.] doi: 10.3866/PKU.WHXB201205111
(3) Morss, L. R.; Edelstein, N. M.; Fuger, J. The Chemistry of the Actinide and Transactinide Elements; Springer-Verlag: NewYork, 2006; p 65.
(4) Meskaldji, S.; Zaiter, A.; Belkhiri, L.; Boucekkine, A. Theor. Chem. Acc. 2012, 131, 1151. doi: 10.1007/s00214-012-1151-9
(5) Roos, B. O.; Malmqvist, P. A.; Gagliardi, L. J. Am. Chem. Soc.2006, 128, 17000. doi: 10.1021/ja066615z
(6) Baichi, M.; Chatillon, C.; Ducros, G.; Froment, K. J. Nucl. Mater. 2006, 349, 57. doi: 10.1016/j.jnucmat.2005.10.001
(7) Tiferet, E.; Zalkind, S.; Mintz, M. H.; Jacob, I.; Shamir, N. Surf. Sci. 2007, 601, 936. doi: 10.1016/j.susc.2006.11.033
(8) Bazley, S. G.; Nunney, T. S.; Mormiche, C.; Hayden, B. E. Appl. Surf. Sci. 2008, 254, 6376. doi: 10.1016/j.apsusc.2008.03.177
(9) Shuai, M.; Hu, H.;Wang, X.; Zhao, P.; Tian, A. J. Mol. Struct.-Theochem 2001, 536, 269. doi: 10.1016/S0166-1280(00)00720-X
(10) Dholabhai, P. P.; Ray, A. K. J. Alloy. Compd. 2007, 445, 356.
(11) Carley, A. F.; Nevitt, P.; Roussel, P. J. Alloy. Compd. 2008, 448,355. doi: 10.1016/j.jallcom.2007.05.028
(12) Mintz, M. H.; Shamir, N. Appl. Surf. Sci. 2005, 252, 633. doi: 10.1016/j.apsusc.2005.02.077
(13) Mclean,W.; Colmenares, C. A.; Smith, R. L.; Somorjai, G. A.Phys. Rev. B 1983, 87, 8.
(14) Gouder, T.; Colmenares, C. A.; Naegele, J. R.; Spirlet, J. C.;Verbist, J. Surf. Sci. 1992, 264, 354. doi: 10.1016/0039-6028(92)90191-8
(15) Koyanagi, G. K.; Bohme, D. K. J. Phys. Chem. A 2006, 110,1232. doi: 10.1021/jp0526602
(16) Fiedler, A.; Schroer, D.; Zummack,W.; Schwarz, H. Inorg. Chim. Acta 1997, 259, 227. doi: 10.1016/S0020-1693(97)05450-9
(17) Smith, K. M.; Poli, R.; Harvey, J. N. Chemistry 2001, 8, 1679.
(18) Armentrout, P. B. Science 1991, 251, 175. doi: 10.1126/science.251.4990.175
(19) Liu, L. L.;Wang, Y. C. Acta Phys. -Chim. Sin. 2010, 26, 441.[刘玲玲, 王永成. 物理化学学报, 2010, 26, 441.] doi: 10.3866/PKU.WHXB20100218
(20) Zeng, X. L.; Ju, X. H.; Xu, S. Y. Adv. Mater. Res. 2012, 550,2810.
(21) Zeng, X. L.; Xu, S. Y.; Ju, X. H. Chin. J. Chem. Phys. 2013, 26,51. doi: 10.1063/1674-0068/26/01/51-53
(22) Zeng, X. L.; Huang, S. Q.; Ju, X. H. J. Radioanal. Nucl. Chem.2013, doi: 10.1007/s10967-013- 2442-x
(23) Lee, C.; Yang,W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
(24) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
(25) Yang, X. Y.;Wang, Y. C.; Geng, Z. Y.; Liu, Z. Y.;Wang, H. Q.J. Mol. Struct. -Theochem 2007, 807, 49. doi: 10.1016/j.theochem.2006.12.017
(26) Wang, Y. C.; Yang, X. Y.; Geng, Z. Y.; Liu, Z. Y. Chem. Phys. Lett. 2006, 431, 39. doi: 10.1016/j.cplett.2006.09.035
(27) Leininger, T.; Stoll, H.; Dolg, M.; Schwerdtfeger, P.; Nicklass,A. J. Chem. Phys. 1996, 105, 1052. doi: 10.1063/1.471950
(28) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03,Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.
(29) Sodupe, M.; Branchadell, V.; Rosi, M.; Bausehllcher, C.W.J. Phys. Chem. A 1997, 101, 7854. doi: 10.1021/jp9711252
(30) Yoshizawa, K.; Shiota, Y.; Yamabe, T. J. Am. Chem. Soc. 2006,128, 9873. doi: 10.1021/ja061604r
(31) Gracia, L.; Sambrano, L. R.; Safont, V. S.; Calatayud, M.;Beltran, A.; Andres, J. J. Phys. Chem. A 2003, 107, 3107. doi: 10.1021/jp0222696
(32) Gracia, L.; Andres, J.; Safont, V. S.; Beltran, A. Organometallics2004, 23, 730. doi: 10.1021/om0342098

[1] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[2] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[3] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[4] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[5] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[6] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[7] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[8] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[9] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[10] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[11] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[12] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[13] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[14] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1411-1420.
[15] Zi-Min WANG,Mo ZHENG,Yong-Bing XIE,Xiao-Xia LI,Ming ZENG,Hong-Bin CAO,Li GUO. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1399-1410.