Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (11): 2385-2391    DOI: 10.3866/PKU.WHXB201309051
ELECTROCHEMISTRY AND NEW ENERGY     
Preparation of Polypyrrole/Sodium Alginate Nanospheres and Their Application for High-Performance Supercapacitors
MA Guo-Fu1, MU Jing-Jing1, ZHANG Zhi-Guo1, SUN Kan-Jun2, PENG Hui1, LEI Zi-Qiang1
1 Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China;
2 College of Chemistry and Environmental Science, Lanzhou City University, Lanzhou 730070, P. R. China
Download:   PDF(1105KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Polypyrrole/sodium alginate (PPy/SA) nanospheres are successfully synthesized by oxidative polymerization of pyrrole using sodium alginate as structural templating agent. The morphology and structure of the PPy/SAnanospheres were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Their electrochemical properties are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The PPy/SAnanospheres exhibit a high specific capacitance of 347 F·g-1 at a charge-discharge current density of 1 A·g-1 in 1 mol·L-1 KCl electrolyte. Unlike pure PPy, there was little attenuation in the capacitance of the PPy/SAnanospheres over 500 continuous charging-discharging cycles demonstrating good electrochemical stability. This result indicates that PPy/SAnanospheres are a promising candidate for high-performance supercapacitors.



Key wordsPolypyrrole      Sodium alginate      Nanosphere      Supercapacitor      Electrode material     
Received: 27 May 2013      Published: 05 September 2013
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (21164009, 21174114) and Program for Changjiang Scholars and Innovative Research Team in University, China (IRT1177).

Corresponding Authors: MA Guo-Fu     E-mail: magf@nwnu.edu.cn
Cite this article:

MA Guo-Fu, MU Jing-Jing, ZHANG Zhi-Guo, SUN Kan-Jun, PENG Hui, LEI Zi-Qiang. Preparation of Polypyrrole/Sodium Alginate Nanospheres and Their Application for High-Performance Supercapacitors. Acta Phys. Chim. Sin., 2013, 29(11): 2385-2391.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201309051     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I11/2385

(1) Wang, G. J.; Zhang, L.; Zhang, J. J. Chem. Soc. Rev. 2012, 41,797. doi: 10.1039/c1cs15060j
(2) Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. doi: 10.1039/b813846j
(3) Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.;Dai, S. Adv. Mater. 2011, 23, 828.
(4) Ko, J. M.; Kim, K. M. Mater. Chem. Phys. 2009, 114, 837. doi: 10.1016/j.matchemphys.2008.10.047
(5) Fang, B. Z.; Binder, L. J. Power Sources 2006, 163, 616. doi: 10.1016/j.jpowsour.2006.09.014
(6) Zhang, H.; Cao, G. P.;Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu,Z. N. Nano Lett. 2008, 8, 2664. doi: 10.1021/nl800925j
(7) McDonough, J. R.; Choi, J.W.; Yang, Y.; Mantia, F. L.; Zhang,Y. G.; Cui, Y. Appl. Phys. Lett. 2009, 95, 243109. doi: 10.1063/1.3273864
(8) Pumera, M. Energ. Environ. Sci. 2011, 4, 68.
(9) Yang, J.; Liu, Y. F.; Chen, X. M.; Hu, Z. H.; Zhao, G. H. Acta Phys. -Chim. Sin. 2008, 24, 13. [杨静, 刘亚菲, 陈晓妹, 胡中华, 赵国华. 物理化学学报, 2008, 24, 13.] doi: 10.1016/S1872-1508(08)60002-9
(10) Zhang, J. T.; Ma, J. Z.; Zhang, L. L.; Guo, P. Z.; Jiang, J.W.;Zhao, X. S. J. Phys. Chem. C 2010, 114, 13608. doi: 10.1021/jp105146c
(11) Qiu, G. H.; Huang, H.; Dharmarathna, S.; Benbow, E.; Stafford,L.; Suib, S. L. Chem. Mater. 2011, 23, 3892. doi: 10.1021/cm2011692
(12) Snook, G. A.; Kao, P.; Best, A. S. J. Power Sources 2011, 196,1. doi: 10.1016/j.jpowsour.2010.06.084
(13) Lee, H.; Kim, H.; Cho, M. S.; Choi, J.; Lee, Y. Electrochim. Acta 2011, 56, 7460. doi: 10.1016/j.electacta.2011.06.113
(14) Zang, J. F.; Li, X. D. J. Mater. Chem. 2011, 21, 10965. doi: 10.1039/c1jm11491c
(15) Fan, L. Z.; Maier, J. Electrochem. Commun. 2006, 8, 937. doi: 10.1016/j.elecom.2006.03.035
(16) Dubal, D. P.; Patil, S. V.; Jagadale, A. D.; Lokhande, C. D.J. Alloy. Compd. 2011, 509, 8183. doi: 10.1016/j.jallcom.2011.03.080
(17) Wei, Z. X.;Wan, M. X.; Lin, T.; Dai, L. M. Adv. Mater. 2003,15, 136.
(18) Lota, K.; Khomenko, V.; Frackowiak, E. J. Phys. Chem. Solids2004, 65, 295. doi: 10.1016/j.jpcs.2003.10.051
(19) Zhu, C. Z.; Zhai, J. F.;Wen, D.; Dong, S. J. J. Mater. Chem.2012, 22, 6300. doi: 10.1039/c2jm16699b
(20) Shi, Q.; Men, C. Y.; Li, J. Acta Phys. -Chim. Sin., 2013, 29,1691. [石琴, 门春艳, 李娟. 物理化学学报, 2013, 29,1691.] doi: 10.3866/PKU.WHXB201306031
(21) Yu, Y. J.; Zhi, H. S.; Chen, S. J.; Bian, C. Q.; Chen,W.; Xue, G.Langmuir 2006, 22, 3899. doi: 10.1021/la051911v
(22) Gao, S. Y.; Zhang, H. J.;Wang, X. M.; Deng, R. P.; Sun, D. H.;Zheng, G. L. J. Phys. Chem. B 2006, 110, 15847. doi: 10.1021/jp062850s
(23) Wang, H.; Fan, G. L.; Zheng, C.; Xiang, X.; Li, F. Ind. Eng. Chem. Res. 2010, 49, 2759. doi: 10.1021/ie901519h
(24) Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.;Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011,334, 75. doi: 10.1126/science.1209150
(25) Raymundo-Pinero, E.; Leroux, F.; Beguin, F. Adv. Mater. 2006,18, 1877.
(26) Li, Y. Z.; Zhao, X.; Xu, Q.; Zhang, Q. H.; Chen, D. J. Langmuir2011, 27, 6458. doi: 10.1021/la2003063
(27) Sahoo, S.; Dhibar, S.; Das, C. K. eXPRESS Polym. Lett. 2012, 6,965. doi: 10.3144/expresspolymlett.2012.102
(28) Kroll, E.;Winnik, F. M. Chem. Mater. 1996, 8, 1594. doi: 10.1021/cm960095x
(29) Zhou, J. P.; Zhang, L. N. J. Polym. Sci., Part B: Polym. Phys.2001, 39, 451.
(30) Qu, Q. T.; Yang, S. B.; Feng, X. L. Adv. Mater. 2011, 23, 5574.doi: 10.1002/adma.v23.46
(31) Sartori, C.; Finch, D. S.; Ralph, B.; Gilding, K. Polymer 1997,38, 43. doi: 10.1016/S0032-3861(96)00458-2
(32) Mi, H. Y.; Zhang, X. G.; Ye, X. G.; Yang, S. D. J. Power Sources 2008, 176, 403. doi: 10.1016/j.jpowsour.2007.10.070
(33) Li, Y. F.; Qian, R. Y. J. Electroanal. Chem. 1993, 362, 267. doi: 10.1016/0022-0728(93)80029-H
(34) Li, Y. F. Electrochim. Acta 1997, 42, 203. doi: 10.1016/0013-4686(96)00145-4
(35) Li, Y. F.; Liu, Z. F. Synth. Met. 1998, 94, 131. doi: 10.1016/S0379-6779(97)04159-3

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] ZHAO Li-Ping, MENG Wei-Shuai, WANG Hong-Yu, QI Li. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. Chim. Sin., 2017, 33(4): 787-794.
[4] SCHLERETH, Andrew NOOMUNA Panae, GAO Pei. Mesoscale Protein Patterning on a Self-Assembled Monolayer Coated Silicon Surface through Nanosphere Lithography[J]. Acta Phys. Chim. Sin., 2017, 33(4): 810-815.
[5] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[6] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[7] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[8] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[9] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[10] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[11] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. Chim. Sin., 2017, 33(1): 198-210.
[12] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1593-1603.
[13] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[14] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.
[15] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.