Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (11): 2371-2384    DOI: 10.3866/PKU.WHXB201309131
ELECTROCHEMISTRY AND NEW ENERGY     
A Mesoscale Smoothed Particle Hydrodynamics Model for Lithium-Ion Batteries
ZENG Jian-Bang, JIANG Fang-Ming
Laboratory of Advanced Energy System, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
Download:   PDF(2019KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

We develop a model for the multi-disciplinary transport coupled electrochemical reaction processes in lithium-ion batteries via a smoothed particle hydrodynamics numerical approach. This model is based on a mesoscopic treatment to the micropore structures of electrodes. Focusing on the effects of solid active particle size, this work explores the feasibility of using this model for electrode microstructure design. The model results provide detailed distributive information of all the primary and participating parameters, including Li+ concentration in the electrolyte, Li concentration in solid active particles, solid/electrolyte phase potential, and transfer current density. Furthermore, macroscopic parameters such as the output voltage are also determined. Based on the simulation results, the underlying physicochemical fundamentals are analyzed and the relationships between the macroscopic performance of the battery and the size of solid active particles are revealed. The battery having the smallest solid active particles in both electrodes features a more uniform Li distribution inside the particles and a more uniform distribution of electrochemical reactions on the surface of each particle, leading to a higher output voltage.



Key wordsSmoothed particle hydrodynamics      Lithium-ion battery      Mesoscale      Multi-disciplinary transport process      Solid active particle size     
Received: 31 July 2013      Published: 13 September 2013
MSC2000:  O646  
Fund:  

The project was supported by the National Natural Science Foundation of China (51206171), Director Innovation Foundation of Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (y207r31001), and the Chinese Academy of Sciences“100 Talents”Plan.

Corresponding Authors: JIANG Fang-Ming     E-mail: jiangfm@ms.giec.ac.cn
Cite this article:

ZENG Jian-Bang, JIANG Fang-Ming. A Mesoscale Smoothed Particle Hydrodynamics Model for Lithium-Ion Batteries. Acta Phys. Chim. Sin., 2013, 29(11): 2371-2384.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201309131     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I11/2371

(1) Jiang, F. M.; Zeng, J. B.;Wu,W. Adv. Mater. Indus. 2011, 12, 2.[蒋方明, 曾建邦, 吴伟. 新材料产业, 2011, 12, 2.]
(2) Venkatasailanathan, R.; Paul,W. C. N.; Sumitava, D.; Shriram,S.; Richard, D. B.; Venkat, R. S. J. Electrochem. Soc. 2012, 159 (3), R31.
(3) Du,W. B.; Gupta, A.; Zhang, X. C.; Sastry, A. M.; Shyy,W. Int. J. Heat Mass Transfer 2010, 53 (17-18), 3552. doi: 10.1016/j.ijheatmasstransfer.2010.04.017
(4) Gu,W. B.;Wang, C. Y. J. Electrochem. Soc. 2000, 147 (8),2910. doi: 10.1149/1.1393625
(5) Wang, C. Y.; Gu,W. B.; Liaw, B. Y. J. Electrochem. Soc. 1998,145 (10), 3407. doi: 10.1149/1.1838820
(6) Smith, K.;Wang, C. Y. J. Power Sources 2006, 161, 628. doi: 10.1016/j.jpowsour.2006.03.050
(7) Fang,W. F.; Kwon, O. J.;Wang, C. Y. Int. J. Energy Res. 2010,34 (2), 107. doi: 10.1002/er.1652
(8) Ye, Y. H.; Shi, Y. X.; Cai, N. S.; Lee, J. J.; He, X. M. J. Power Sources 2012, 199, 227. doi: 10.1016/j.jpowsour.2011.10.027
(9) Zhang, X.; Shyy,W.; Sastry, A. M. J. Electrochem. Soc. 2007,154 (10), A910.
(10) Zhang, X.; Sastry, A. M.; Shyy,W. J. Electrochem. Soc. 2008,155 (7), A542.
(11) Yi, Y. B.;Wang, C.W.; Sastry, A. M. J. Eng. Mater. Techonol.2006, 128 (1), 73. doi: 10.1115/1.2130733
(12) Wang, C.W.; Sastry, A. M. J. Electrochem. Soc. 2007, 154 (11),A1035.
(13) Garcia, R. E.; Chiang, Y. M.; Carter,W. C.; Limthongkul, P.;Bishop, C. M. J. Electrochem. Soc. 2005, 152 (1), A255.
(14) Garcia, R. E.; Chiang, Y. M. J. Electrochem. Soc. 2007, 154 (9),A856
(15) Smith, M.; Garcia, R. E.; Horn, Q. C. J. Electrochem. Soc. 2009,156 (11), A896.
(16) Awarke, A.;Wittler, M.; Pischinger, S.; Bockstette, J.J. Electrochem. Soc. 2012, 159 (6), A798.
(17) Liu, M. B.; Liu, G. R. Arch. Comput. Methods Eng. 2010, 17 (1), 25. doi: 10.1007/s11831-010-9040-7
(18) Jiang, F. M.; Sousa, A. C. M. Heat Mass Transfer 2007, 43 (5),479. doi: 10.1007/s00231-006-0131-9
(19) Jiang, F. M.; Oliveira, M. C. A.; Sousa, A. C. M. Comput. Phys. Commun. 2007, 176 (7), 471. doi: 10.1016/j.cpc.2006.12.003
(20) Jiang, F. M.; Sousa, A. C. M. J. Porous Media 2010, 13 (11),951. doi: 10.1615/JPorMedia.v13.i11
(21) Vishwakarma, V.; Das, A. K.; Das, P. K. Appl. Therm. Eng.2011, 31 (14), 2963.
(22) Wang, P.; Shao, J. L.; Qin, C. S. Acta Phys. Sin. 2012, 61 (23),234701. [王裴, 邵建立, 秦承森. 物理学报, 2012, 61 (23),234701.]
(23) Tartakovsky, A. M.; Tartakovsky, D. M.; Scheibe, T. D.; Meakin,P. SIAM J. Sci. Comput. 2008, 30 (6), 2799. doi: 10.1137/070691097
(24) Das, A. K.; Das, P. K. Int. J. Numer. Meth. Fl. 2011, 67 (6),671. doi: 10.1002/fld.v67.6
(25) Jiang, T.; Ouyang, J.; Li, X. J.; Zhang, L.; Ren, J. L. Acta Phys. Sin. 2011, 60 (9), 054701. [蒋涛, 欧阳杰, 栗雪娟, 张林,任金莲. 物理学报, 2011, 60 (9), 054701.]
(26) Ma, L. Q.; Chang, J. Z.; Liu, H. T.; Liu, M. B. Acta Phys. Sin.2012, 61 (5), 054701. [马理强, 常建忠, 刘汉涛, 刘谋斌. 物理学报, 2012, 61 (5), 054701.]
(27) Han, Y.W.; Qiang, H. F.; Zhao, J. L.; Gao,W. R. Acta Phys. Sin.2013, 62 (4), 044702. [韩亚伟, 强洪夫, 赵玖玲, 高巍然. 物理学报, 2013, 62 (4), 044702.]
(28) Wang, G. Q.; Mukherjee, P. P.;Wang, C. Y. Electrochim. Acta2006, 51, 3139. doi: 10.1016/j.electacta.2005.09.002
(29) Wang, G. Q.; Mukherjee, P. P.;Wang, C. Y. Electrochim. Acta2006, 51, 3151. doi: 10.1016/j.electacta.2005.09.003
(30) Nagarajan, G. S.; Zee, J.W. V.; Spotnitz, R. M. J. Electrochem. Soc. 1998, 145 (3), 771. doi: 10.1149/1.1838344
(31) Ramadass, P.; Haran, B.; Gomadam, P. M.; White, R.; Popov, B.N. J. Electrochem. Soc. 2004, 151 (2), A196.
(32) Kuzminskii, Y. V.; Nyrkova, L. I.; Andriiko, A. A. J. Power Sources 1993, 46, 29. doi: 10.1016/0378-7753(93)80032-K
(33) Cleary, P.W.; Monaghan, J. J. J. Comput. Phys. 1999, 148 (1),227. doi: 10.1006/jcph.1998.6118
(34) Monaghan, J. J. Comput. Phys. Rep. 1985, 3 (2), 71. doi: 10.1016/0167-7977(85)90010-3
(35) Verlet, L. Phys. Rev. 1967, 159 (1), 98. doi: 10.1103/PhysRev.159.98
(36) Cleary, P.W. Appl. Math. Model 1998, 22 (12), 981. doi: 10.1016/S0307-904X(98)10031-8
(37) Ryan, E. M.; Tartakovsky, A. M.; Amona, C. Comput. Phys. Commun. 2010, 181 (12), 2008. doi: 10.1016/j.cpc.2010.08.022
(38) Wu,W.; Jiang, F. M. Mater. Charact. 2013, 80, 62. doi: 10.1016/j.matchar.2013.03.011
(39) Wu,W.; Jiang, F. M.; Zeng, J. B. Acta Phys. -Chim. Sin. 2013,29 (11), 2361. [吴伟, 蒋方明, 曾建邦. 物理化学学报, 2013,29 (11), 2361.] doi: 10.3866/PKU.WHXB201309032.

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1197-1204.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. Chim. Sin., 2017, 33(1): 18-27.
[10] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2293-2300.
[11] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(8): 1999-2006.
[12] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. Chim. Sin., 2016, 32(5): 1056-1061.
[13] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2016, 32(4): 969-974.
[14] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. Chim. Sin., 2016, 32(3): 717-722.
[15] ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He. Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries[J]. Acta Phys. Chim. Sin., 2015, 31(5): 905-912.