Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (11): 2295-2299    DOI: 10.3866/PKU.WHXB201309241
PTMA/Graphene as a Novel Cathode Material for Rechargeable Magnesium Batteries
CHEN Qiang1,2, NULI Yan-Na1,2, GUOWei3, YANG Jun1,2, WANG Jiu-Lin1,2, GUO Yu-Guo3
1 School of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;
2 Hirano Institute for Materials Innovation, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;
3 Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
Download:   PDF(573KB) Export: BibTeX | EndNote (RIS)      


We report the synthesis of a poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)/graphene nanocomposite in which graphene is used as a support for improving electronic conductivity. The structure and morphology of the nanocomposite were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). These results reveal that a graphene surface is decorated by nanoparticles of PTMAwith an average size of 10 nm. The electrochemical performance of the PTMA/graphene composite as a cathode material in rechargeable magnesium batteries was investigated using cyclic voltammetry and galvanostatic charge/discharge techniques. In a "first generation" electrolyte Mg(AlCl2BuEt)2/tetrahydrofuran (THF) (0.25 mol·L-1), the material exhibits an initial discharge capacity of 81.2 mAh·g-1 at 22.8 mA·g-1. Further studies will focus on improving the capacity using electrolytes with a wider electrochemical window.

Key wordsEnergy storage and conversion      Rechargeable magnesium battery      Nanocomposite      Organic cathode material      Graphene     
Received: 26 June 2013      Published: 24 September 2013
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (21273147) and Shanghai Municipal Science and Technology Commission, China (11JC1405700).

Corresponding Authors: NULI Yan-Na, GUO Yu-Guo     E-mail:;
Cite this article:

CHEN Qiang, NULI Yan-Na, GUOWei, YANG Jun, WANG Jiu-Lin, GUO Yu-Guo. PTMA/Graphene as a Novel Cathode Material for Rechargeable Magnesium Batteries. Acta Phys. Chim. Sin., 2013, 29(11): 2295-2299.

URL:     OR

(1) Song, Z. P.; Zhan, H.; Zhou, Y. H. Angew. Chem. Int. Edit. 2010,49, 8444. doi: 10.1002/anie.201002439
(2) Chen, H.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.;Dolhem, F.; Tarascon, J. M.; Poizot, P. J. Am. Chem. Soc. 2009,131, 8984. doi: 10.1021/ja9024897
(3) Tarascon, J. M. ChemSusChem 2008, 1, 777. doi: 10.1002/cssc.v1:8/9
(4) Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Pibière, P.;Poizot, P.; Tarascon, J. M. Nat. Mater. 2009, 8, 120. doi: 10.1038/nmat2372
(5) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a
(6) Poizot, P.; Dolhem, F. Energy Environ. Sci. 2011, 4, 2003. doi: 10.1039/c0ee00731e
(7) Gao, X. P.; Yang, H. X. Energy Environ. Sci. 2010, 3, 174. doi: 10.1039/b916098a
(8) Novák, P.; Müller, K.; Santhanam, K. S. V.; Hass, O. Chem. Rev.1997, 97, 207. doi: 10.1021/cr941181o
(9) Oyama, N.; Tatsuma, T.; Sato, T.; Sotomura, T. Nature 1995,373, 598. doi: 10.1038/373598a0
(10) Song, Z. P.; Zhan, H.; Zhou, Y. H. Chem. Commun. 2009, 448.
(11) Han, X. Y.; Chang, C. X.; Yuan, L. J.; Sun, T. L.; Sun, J. T. Adv. Mater. 2007, 19, 1616.
(12) Zeng, R. H.; Li, X. P.; Qiu, Y. C.; Li,W. S.; Yi, J.; Lu, D. S.;Tan, C. L.; Xu, M. Q. Electrochem. Commun. 2010, 12, 1253.doi: 10.1016/j.elecom.2010.06.033
(13) Suga, T.; Ohshiro, H.; Sugita, S.; Qyaizu, K.; Nishide, H. Adv. Mater. 2009, 21, 1627. doi: 10.1002/adma.v21:16
(14) Qyaizu, K.; Nishide, H. Adv. Mater. 2009, 21, 2339. doi: 10.1002/adma.v21:22
(15) Nakahara, K.; Iwasa, S.; Satoh, M.; Morioka, Y.; Iriyama, J.;Suguro, M.; Hasegawa, E. Chem. Phys. Lett. 2002, 359, 351.doi: 10.1016/S0009-2614(02)00705-4
(16) Kim, J. K.; Ahn, J. H.; Cheruvally, G.; Chauhan, G. S.; Choi, J.W.; Kim, D. S.; Ahn, H. J.; Lee, S. H.; Song, C. E. Met. Mater. Int. 2009, 15, 77. doi: 10.1007/s12540-009-0077-9
(17) Guo,W.; Yin, Y. X.; Xin, S.; Guo, Y. G.;Wan, L. J. Energy Environ. Sci. 2012, 5, 5221. doi: 10.1039/c1ee02148f
(18) Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.;Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature2007, 407, 724.
(19) Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui,M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Energy Environ. Sci. 2012, 5, 5941. doi: 10.1039/c2ee03029b
(20) Hummers,W. S.; Offeman, R. E., Jr. J. Am. Chem. Soc. 1958,80, 1339. doi: 10.1021/ja01539a017
(21) Aurbach, D.; Schechter, A.; Moshkovich, M.; Cohen, Y.J. Electrochem. Soc. 2001, 148, A1004.
(22) Aurbach, D.; Gizbar, H.; Schechter, A.; Chusid, O.; Gottlieb, H.E.; Gofer, Y.; Goldberg, I. J. Electrochem. Soc. 2002, 149, A115.
(23) Vestfried, Y.; Chusid, O.; Gofer, Y.; Aped, P.; Aurbach, D.Organometallics 2007, 26, 3130. doi: 10.1021/om061076s
(24) Vestfried, Y.; Levi, M. D.; Gofer, Y.; Aurbach, D. J. Electroanal. Chem. 2005, 576, 183. doi: 10.1016/j.jelechem.2004.09.034
(25) Choucair, M.; Thordarson, P.; Stride, J. A. Nat. Nanotechnol.2009, 4, 30. doi: 10.1038/nnano.2008.365

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1822-1827.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1621-1627.
[5] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1628-1634.
[6] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[7] WANG Lei, YU Fei, MA Jie. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1338-1353.
[8] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[9] YANG Shao-Bin, LI Si-Nan, SHEN Ding, TANG Shu-Wei, SUN Wen, CHEN Yue-Hui. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. Chim. Sin., 2017, 33(3): 520-529.
[10] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[11] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. Chim. Sin., 2017, 33(2): 377-385.
[12] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[13] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[14] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.
[15] WANG Xu-Chun, LI Jin-Ze, LI Guang-Yong, WANG Jin, ZHANG Xue-Tong, GUO Qiang. Fabrication and Performance of Various Aerogel Microspheres[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2141-2152.