Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (11): 2321-2331    DOI: 10.3866/PKU.WHXB201310082
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Orbital Interactions in Native Chemical Ligation Reaction of Proline Thioesters
ZHANG Qi1, YU Hai-Zhu2, SHI Jing1
1 Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China;
2 Department of Polymer Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
Download:   PDF(3373KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

A systematic theoretical study was carried out to investigate the origin of the relatively low reactivity of peptide-prolyl-thioesters in the native chemical ligation (NCL) reaction. Mechanistic calculations were performed on the two NCL reactions of peptide-prolyl-thioester (Path-Pro) and peptidealanyl-thioester (Path-Ala). The results show that both include three steps: intermolecular thiol-thioester exchange, transthioesterification, and a final intramolecular S→N acyl migration. The calculations indicate that the first step is the rate determining step of both pathways. Path-Pro is kinetically disfavored, so the peptide-prolyl-thioester is found to be less reactive in NCL reaction. This conclusion is consistent with the experimental observations. Further examination of the rate determining steps of these two pathways shows that the n→π* interaction of proline αN carbonyl increases the LUMO orbital energy of peptidyl-prolylthioester, decreases the interaction energy between proline carbonyl and the sulphur atom in aryl thiol, and finally increases the total energy barrier.



Key wordsNative chemical ligation      Proline      n→π* interaction      Mechanism      Density functional theory     
Received: 07 June 2013      Published: 08 October 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21272223, 21202006).

Corresponding Authors: SHI Jing     E-mail: shijing@ustc.edu.cn
Cite this article:

ZHANG Qi, YU Hai-Zhu, SHI Jing. Orbital Interactions in Native Chemical Ligation Reaction of Proline Thioesters. Acta Phys. Chim. Sin., 2013, 29(11): 2321-2331.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201310082     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I11/2321

(1) Dawson, P. E.; Muir, T.W.; Clark-Lewis, I.; Kent, S. B. H.Science 1994, 266, 776. doi: 10.1126/science.7973629
(2) (a) Adams, A. L.; Macmillan, D. J. Pept. Sci. 2013, 19, 65. doi: 10.1002/psc.2469
(b) Aucagne, V.; Valverde, I. E.; Marceau, P.; Galibert, M.;Dendane, N.; Delmas, A. F. Angew. Chem. Int. Edit. 2012, 51,11320.
(c) Huang, Y. C.; Li, Y. M.; Chen, Y.; Pan, M.; Li, Y. T.; Yu, L.;Guo, Q. X.; Liu, L. Angew. Chem. Int. Edit. 2013, 52, 4858.
(d) Zhan, C. Y.; Varney, K.; Yuan,W. R.; Zhao, L.; Lu,W. Y.J. Am. Chem. Soc. 2012, 134, 6855.
(e) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin,Y.; Cui, H. K.; Liu, L. Angew. Chem. Int. Edit. 2011, 50, 7645.
(f) McGinty, R. K.; Kim, J.; Chatterjee, C.; Roeder, R. G.; Muir,T.W. Nature 2008, 453, 812.
(g) Fang, G. M.;Wang, J. X.; Liu, L. Angew. Chem. Int. Edit.2012, 51, 10347.
(h) Torbeev, V. Y.; Raghuraman, H.; Mandal, K.; Senapati, S.;Perozo, E.; Kent, S. B. H. J. Am. Chem. Soc. 2009, 131, 884.
(i) Zheng, J. S.; Chang, H. N.;Wang, F. L.; Liu, L. J. Am. Chem. Soc. 2011, 133, 11080.
(3) Hackeng, T. M.; Griffin, J. H.; Dawson, P. E. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 10068. doi: 10.1073/pnas.96.18.10068
(4) Tan, Z.; Shang, S.; Danishefsky, S. J. Angew. Chem. Int. Edit.2010, 49, 9500. doi: 10.1002/anie.201005513
(5) Wang, C. J.; Li, Y.; Yang, X. Y.; Lin, L. Acta Phys. -Chim. Sin.2007, 23, 305. [王朝杰, 李永, 杨新宇, 林丽. 物理化学学报, 2007, 23, 305.] doi: 10.1016/S1872-1508(07)60024-2
(6) Zhang, B. B.; Zhao, C.;Wang, X. S.; He, L.; Du,W. H. Acta Phys. -Chim. Sin. 2013, 29, 1080. [张兵兵, 赵聪, 王雪松,何蕾, 杜为红. 物理化学学报, 2013, 29, 1080.] doi: 10.3866/PKU.WHXB201303111
(7) Wang, C. J.; Cai, Y. P.; Huang, X. H.;Wei, T. Acta Phys. -Chim. Sin. 2011, 27, 352. [王朝杰, 蔡跃飘, 黄旭慧, 卫涛. 物理化学学报, 2011, 27, 352.] doi: 10.3866/PKU.WHXB20110232
(8) Pollock, S. B.; Kent, S. B. H. Chem. Commun. 2011, 47, 2342.doi: 10.1039/c0cc04120c
(9) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09,Revision B.01; Gaussian Inc.:Wallingford, CT, 2009.
(10) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. doi: 10.1063/1.464913
(11) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. doi: 10.1103/PhysRevB.37.785
(12) Paddon-Row, M. N.; Anderson, C. D.; Houk, K. N. J. Org. Chem. 2009, 74, 861. doi: 10.1021/jo802323p
(13) Hayden, A. E.; Houk, K. N. J. Am. Chem. Soc. 2009, 131,4084. doi: 10.1021/ja809142x
(14) Zhang, S. L.; Fu, Y.; Shang, R.; Guo, Q. X.; Liu, L. J. Am. Chem. Soc. 2010, 132, 638. doi: 10.1021/ja907448t
(15) Shang, R.; Xu, Q.; Jiang, Y. Y.;Wang, Y.; Liu, L. Org. Lett.2010, 12, 1000. doi: 10.1021/ol100008q
(16) Shang, R.; Yang, Z.W.;Wang, Y.; Zhang, S. L.; Liu, L. J. Am. Chem. Soc. 2010, 132, 14391. doi: 10.1021/ja107103b
(17) Hollwarth, A.; Bohme, M.; Dapprich, S.; Ehlers, A.W.; Gobbi,A.; Jonas, V.; Kohler, K. F.; Steg Mann, R.; Veldkamp, A.;Frenking, G. Chem. Phys. Lett. 1993, 208, 237. doi: 10.1016/0009-2614(93)89068-S
(18) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.doi: 10.1021/j100377a021
(19) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0310-x
(20) Lide, D. R. CRC Handbook of Chemistry and Physics, 87th ed.;Taylor & Francis: Boca Raton, Florida; 2006-2007.
(21) Tissandier, M. D.; Cowen, K. A.; Feng,W. Y.; Gundlach, E.;Cohen, M. H.; Earhart, A. D.; Coe, J. V. J. Phys. Chem. A 1998,102, 7787. doi: 10.1021/jp982638r
(22) (a) Johnson, E. C. B.; Kent, S. B. H. J. Am. Chem. Soc. 2006,128, 6640. doi: 10.1021/ja058344i
(b) Dawson, P. E.; Churchill, M. J.; Ghadiri, M. R.; Kent, S. B.H. J. Am. Chem. Soc. 1997, 119, 4325.
(23) (a)Wang, C.; Guo, Q. X.; Fu, Y. Chem. Asian J. 2011, 6, 1241.doi: 10.1002/asia.201000760
(b) Zheng, J. S.; Cui, H. K.; Fang, G. M.; Xi,W. X.; Liu, L.ChemBioChem 2010, 11, 511.
(c)Wang, C.; Guo, Q. X. Sci. China Chem. 2012, 55, 2075.
(d)Wang, C.; Liu, L. Chin. J. Chem. 2012, 30, 1974.
(24) Hinderaker, M. P.; Raines, R. T. Protein Sci. 2003, 12, 1188.doi: 10.1110/ps.0241903
(25) (a) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Org. Chem.2012, 77, 658. doi: 10.1021/jo202342q
(b) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc.2008, 130, 10848.
(26) (a) Zade, S. S.; Bendikov, M. Org. Lett. 2006, 8, 5243. doi: 10.1021/ol062030y
(b) Nakatani, K.; Matsuno, T.; Adachi, K.; Hagihara, S.; Saito,I. J. Am. Chem. Soc. 2001, 123, 5695.

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. Chim. Sin., 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. Chim. Sin., 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Phys. Chim. Sin., 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. Chim. Sin., 2018, 34(3): 303-313.
[5] GONG Linji, XIE Jiani, ZHU Shuang, GU Zhanjun, ZHAO Yuliang. Application of Multifunctional Nanomaterials in Tumor Radiosensitization[J]. Acta Phys. Chim. Sin., 2018, 34(2): 140-167.
[6] XIAO Jie, ZHANG Bo, ZHENG Zhao-Lei. Development and Validation of a Reduced Chemical Kinetic Mechanism for HCCI Engine of Biodiesel Surrogate[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1752-1764.
[7] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1905-1914.
[8] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1875-1883.
[9] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1803-1810.
[10] WANG Ling-Xuan, ZHU Hua-Tong, ZU Li-Li. Studying Ionization and Decomposition Mechanism of Alkyl Dinitrites by Mass Spectrometry[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1709-1714.
[11] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1310-1323.
[12] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[13] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1399-1410.
[14] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1085-1107.
[15] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1171-1180.