Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (12): 2655-2660    DOI: 10.3866/PKU.WHXB201310141
PHYSICAL CHEMISTRY OF MATERIALS     
Synthesis of BiOBr-TiO2 Nanocrystalline Composite by Microemulsion-Like Chemical Precipitation Method and Its Photocatalytic Activity
LUAN Yun-Bo1, FENG Yu-Jie1, WANG Wen-Xin2, XIE Ming-Zheng1, JING Li-Qiang2
1 National Engineer Research Centar of Urban Water Resources, Harbin Institute of Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin 150090, P. R. China;
2 Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, P. R. China
Download:   PDF(821KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nanocrystalline BiOBr-TiO2 composite has been prepared using a microemulsion-like chemical precipitation method. The key to this method is the dual role of Br- in the synthetic process. The Br- of cetyl trimethyl ammonium bromide is able to link the cetyltrimethyl ammonium cation with anatase TiO2 to form a water-in-oil microemulsion-like system. Meanwhile, Br- is also a bromine source favorable for the fabrication of a nanoheterostructure between BiOBr and TiO2. Compared with pure TiO2 and BiOBr-TiO2 composite obtained using a traditional aqueous system, the as-obtained BiOBr-TiO2 displays high photogenerated charge separation, responsible for excellent photocatalytic activity for degrading liquid-phase phenol solution and gas-phase acetaldehyde. This result is ascribed to its effective heterostructure.



Key wordsTiO2      BiOBr      Microemulsion-like chemical precipitation method      Nanocomposite      Photocatalysis     
Received: 17 July 2013      Published: 14 October 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21071048).

Corresponding Authors: FENG Yu-Jie, JING Li-Qiang     E-mail: yujief@hit.edu.cn;Jinglq@hlju.edu.cn
Cite this article:

LUAN Yun-Bo, FENG Yu-Jie, WANG Wen-Xin, XIE Ming-Zheng, JING Li-Qiang. Synthesis of BiOBr-TiO2 Nanocrystalline Composite by Microemulsion-Like Chemical Precipitation Method and Its Photocatalytic Activity. Acta Phys. Chim. Sin., 2013, 29(12): 2655-2660.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201310141     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2013/V29/I12/2655

(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
(2) Hoffmann, M. R.; Martin, S. T.; Choi,W. Y.; Bahnemann, D.W.Chem. Rev. 1995, 95, 69. doi: 10.1021/cr00033a004
(3) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science2001, 293, 269. doi: 10.1126/science.1061051
(4) Nagaveni, K.; Sivalingam, G.; Hegde, M. S.; Madras, G.Environ. Sci. Technol. 2004, 38, 1600. doi: 10.1021/es034696i
(5) Li, H. H.; Chen, R. F.; Ma, Z.; Zhang, S. L.; An, Z. F.; Huang,W. Acta Phys. -Chim. Sin. 2011, 27, 1017. [李欢欢, 陈润锋,马琮, 张胜兰, 安众福, 黄维. 物理化学学报, 2011, 27,1017.] doi: 10.3866/PKU.WHXB20110514
(6) Zhao,W.; Ma,W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G.J. Am. Chem. Soc. 2004, 126, 4782. doi: 10.1021/ja0396753
(7) Kwak, E. S.; Lee,W.; Park, N. G.; Kim, J.; Lee, H. Adv. Funct. Mater. 2009, 19, 1093. doi: 10.1002/adfm.v19:7
(8) Zang, Y. J.; Farnood, R. Appl. Catal. B: Environ. 2008, 79,334. doi: 10.1016/j.apcatb.2007.10.019
(9) Dai, G. P.; Liu, S. Q.; Peng, R.; Luo, T. X. Acta Phys. -Chim. Sin. 2012, 28, 2169. [戴高鹏, 刘素芹, 彭荣, 罗天雄, 物理化学学报, 2012, 28, 2169.] doi: 10.3866/PKU.WHXB201207041
(10) Ai, Z.; Ho,W.; Lee, S.; Zhang, L. Environ. Sci. Technol. 2009,43, 4143. doi: 10.1021/es9004366
(11) Zhang, X.; Ai, Z.; Jia, F.; Zhang, L. J. Phys. Chem. C 2008, 112,747. doi: 10.1021/jp077471t
(12) Yu, C. L.; Cao, F. F.; Shu, Q.; Bao, Y. L.; Xie, Z. P.; Yu, J. C.;Yang, K. Acta Phys. -Chim. Sin. 2012, 28, 647. [余长林, 操芳芳, 舒庆, 包玉龙, 谢志鹏, Yu Jimmy C, 杨凯. 物理化学学报, 2012, 28, 647.] doi: 10.3866/PKU.WHXB201201051
(13) Ju, J. F.; Li, C. J.; Xu, M. J. Funct. Mater. 2005, 36, 648. [鞠剑峰, 李澄俊, 徐铭. 功能材料, 2005, 36, 648.]
(14) Li, F. B.; Gu, G. B.; Li, X. J.;Wan, H. F. Acta Phys. -Chim. Sin.2000, 11, 997. [李芳柏, 古国榜, 李新军, 万洪富. 物理化学学报. 2000, 11, 997.] doi: 10.3866/PKU.WHXB20001108
(15) Zhang, L.; Cao, X. F.; Chen, X. T.; Xue, Z. L. J. Colloid Interface Sci. 2011, 354, 630. doi: 10.1016/j.jcis.2010.11.042
(16) Liu, Z. S.;Wu, B. T.; Zhu, Y. B.;Wang, F.;Wang, L. G.J. Colloid Interface Sci. 2013, 392, 337. doi: 10.1016/j.jcis.2012.09.062
(17) Xiao, P. P.; Zhu, L. L.; Zhu, Y. C.; Qian, Y. T. J. Solid State Chem. 2011, 184, 1459. doi: 10.1016/j.jssc.2011.04.015
(18) Li,W.W.; Matyjaszewski, K. Polym. Chem. 2012, 3, 1813.doi: 10.1039/c1py00431j
(19) Nishioka, K.; Niidome, Y.; Yamada, S. Langmuir 2007, 23,10353. doi: 10.1021/la7015534
(20) Wang,W. X.; Jing, L. Q.; Qu, Y. C.; Luan, Y. B.; Fu, H. G.;Xiao, Y. C. J. Hazard. Mater. 2012, 243, 169. doi: 10.1016/j.jhazmat.2012.10.017
(21) Jing, L. Q.; Qu, Y. C.; Su, H. J.; Yao, C. H.; Fu, H. G. J. Phys. Chem. C 2011, 115, 12375. doi: 10.1021/jp203566v
(22) Luan, Y. B.; Jing, L. Q.; Xie, M. Z.; Shi, X.; Fan, X. X.; Cao, Y.;Feng, Y. J. Phys. Chem. Chem. Phys. 2012, 14, 1352. doi: 10.1039/c1cp22907a
(23) Jing, L. Q.; Sun, X. J.; Shang, J.; Cai,W. M.; Xu, Z. L.; Du, Y.G.; Fu, H. G. Sol. Energg Mat. Sol. Cells 2003, 79, 133. doi: 10.1016/S0927-0248(02)00393-8
(24) Lin, Y. H.;Wang, D. J.; Zhao, Q. D.; Yang, M.; Zhang, Q. L.J. Phys. Chem. B 2004, 108, 3202. doi: 10.1021/jp037201k
(25) Zhang, Q. H.; Gao, L.; Guo, J. K. Appl. Catal. B 2000, 26,207. doi: 10.1016/S0926-3373(00)00122-3
(26) Cheng, H. F.; Huang, B. B.;Wang, Z. Y.; Qin, X. Y.; Zhang, X.Y.; Dai, Y. Chem. Eur. J. 2011, 17, 8039. doi: 10.1002/chem.v17.29
(27) Yang, X. H.; Li, Z.; Sun, C. H.; Yang, H. G.; Li, C. Z. Chem. Mater. 2011, 23, 3486. doi: 10.1021/cm2008768
(28) Qu, Y. C.;Wang,W. X.; Jing, L. Q. Appl. Surf. Sci. 2010, 257,151. doi: 10.1016/j.apsusc.2010.06.054
(29) Gun¹ko, V. M.; Zarko, V. I.; Turov, V. V.; Leboda, R.;Chibowski, E.; Pakhlov, E. M.; Goncharuk, E. V.; Marciniak,M.; Voronin, E. F.; Chuiko, A. A. J. Colloid Interface Sci. 1999,220, 302. doi: 10.1006/jcis.1999.6481
(30) Jing, L. Q.; Fu, H. G.;Wang, B. Q.;Wang, D. J.; Xin, B. F.; Li,S. D.; Sun, J. Z. Appl. Catal. B: Environ. 2006, 62, 282. doi: 10.1016/j.apcatb.2005.08.012
(31) Zhang, X.; Zhang, L. Z.; Xie, T. F.;Wang, D. J. J. Phys. Chem. C 2009, 113, 7371. doi: 10.1021/jp900812d
(32) Kronik, L.; Shapira, Y. Surf. Sci. Rep. 1999, 37, 1. doi: 10.1016/S0167-5729(99)00002-3
(33) Lu, Y. C.;Wang, L. L.;Wang, D. J.; Xie, T. F.; Chen, L. P.; Lin,Y. H. Mater. Chem. Phys. 2011, 129, 281. doi: 10.1016/j.matchemphys.2011.04.004

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[3] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1411-1420.
[4] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. Chim. Sin., 2017, 33(5): 960-967.
[6] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[7] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. Chim. Sin., 2017, 33(3): 602-610.
[8] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[9] WAN Xiu-Mei, WANG Li, GONG Xiao-Qing, LU Dan-Feng, QI Zhi-Mei. Detection Sensitivity to Benzo[a]pyrene of Nanoporous TiO2 Thin-Film Waveguide Resonance Sensor[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2523-2531.
[10] LAN Hai, XIAO Xi, YUAN Shan-Liang, ZHANG Biao, ZHOU Gui-Lin, JIANG Yi. MoFeOx-Supported Catalysts for the Catalytic Conversion of Glycerol to Allyl Alcohol without External Hydrogen Donors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2301-2309.
[11] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2029-2034.
[12] HUANG Ya-Yu, FANG Qiu-Yan, ZHOU Jian-Zhang, ZHAN Dong-Ping, SHI Kang, TIAN Zhong-Qun. Deposition and Inhibition of Cu on TiO2 Nanotube Photoelectrode in Photoinduced Confined Etching System[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2042-2051.
[13] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[14] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[15] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.