Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (12): 2498-2504    DOI: 10.3866/PKU.WHXB201310212
THERMODYNAMICS, KINETICS, AND STRUCTURAL CHEMISTRY     
Preparation and Characterization of Superthermite Al/Fe2O3 and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine
ZHAO Ning-Ning1, HE Cui-Cui1, LIU Jian-Bing1, MA Hai-Xia1, AN Ting2, ZHAO Feng-Qi2, HU Rong-Zu2
1 School of Chemical Engineering, Northwest University, Xi'an 710069, P. R. China;
2 Science and Technology on Combustion and Explosion Laboratory, Xi'an Modern Chemistry Research Institute, Xi'an 710065, P. R. China
Download:   PDF(930KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Hollow Fe2O3 nanorods were prepared using a hydrothermal method, and were then combined with Al nanoparticles to form superthermite Al/Fe2O3 by ultrasonic mixing. Fe2O3 and Al/Fe2O3 were characterized using X-ray powder diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). The effects of Al/Fe2O3, Al, and nano-Fe2O3 powders on the thermal decomposition of cyclotrimethylene trinitramine (RDX) were investigated using differential scanning calorimetry (DSC). The results show that the superthermite Al/Fe2O3 affects the thermal decomposition of RDX and greatly enhances its secondary gas-phase reaction. The shapes of the main RDX decomposition peaks changed with increasing superthermite content. The main influences of superthermite Al/Fe2O3, Al nanopowders, and Fe2O3 nanorods on the thermal decomposition of RDX are that the secondary decomposition peaks become distinct and the peak temperature decreases.



Key wordsNano-Fe2O3      Superthermite Al/Fe2O3      Cyclotrimethylene trinitramine      Hydrothermal method      Ultrasonically dispersed method      Thermal decomposition     
Received: 12 June 2013      Published: 21 October 2013
MSC2000:  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21073141, 21373161), Program for New Century Excellent Talents in University of Ministry of Education of China (12-1047), Research Fund for the Doctoral Program of Higher Education of China (20126101110009), Science and Technology Foundation of Science and Technology on Combustion and Explosion Laboratory, China (9140C3501041001).

Corresponding Authors: MA Hai-Xia     E-mail: mahx@nwu.edu.cn
Cite this article:

ZHAO Ning-Ning, HE Cui-Cui, LIU Jian-Bing, MA Hai-Xia, AN Ting, ZHAO Feng-Qi, HU Rong-Zu. Preparation and Characterization of Superthermite Al/Fe2O3 and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine. Acta Phys. -Chim. Sin., 2013, 29(12): 2498-2504.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201310212     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I12/2498

(1) Valliappan, S.; Swiatkiewicz, J.; Puszynski, J. A. Powder Technol. 2005, 156, 164. doi: 10.1016/j.powtec.2005.04.027
(2) Dreizin, E. L. Prog. Energ. Combust. 2009, 35, 141. doi: 10.1016/j.pecs.2008.09.001
(3) An, T.; Zhao, F. Q.; Xiao, L. B. Chin. J. Expls. Propell. 2010, 33 (3), 55. [安亭, 赵凤起, 肖立柏. 火炸药学报, 2010, 33 (3),55.]
(4) Siegert, B.; Comet, M.; Muller, O.; Pourroy, G.; Spitzer, D. J. Phys. Chem. C 2010, 114, 19562. doi: 10.1021/jp1014737
(5) Pamela, J.; Kaste, B. The Amptiac Newsletter 2004, 8 (4), 85.
(6) Miziolek, A.W. Oxford: Oxford University Press, 2003; pp 1-5.
(7) Miziolek, A.W. The Amptica Newsletter 2002, 6 (1), 43.
(8) Zhou, L.; Piekiel, N.; Chowdhury, S.; Zachariah, M. R. J. Phys. Chem. C 2010, 114 (33), 14269. doi: 10.1021/jp101146a
(9) Park, C. D.; Mileham, M.; van de Burgt, L. J.; Muller, E. A.;Stiegman, A. E. J. Phys. Chem. C 2010, 114 (6), 2814. doi: 10.1021/jp910274w
(10) Wang, Y.; Li, F. S.; Jiang,W.; Zhang, X. F.; Guo, X. D.Initiators & Pyrotechnics 2008, 4, 11. [王毅, 李凤生, 姜炜, 张先锋, 郭效德. 火工品, 2008, 4, 11.]
(11) An, T.; Zhao, F. Q.; Pei, Q.; Xiao, L. B.; Xu, S. Y.; Gao, H. X.;Xing, X. L. Chin. J. Inorg. Chem. 2011, 27 (2), 231. [安亭,赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲. 无机化学学报, 2011, 27 (2), 231.]
(12) Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28 (1), 1.
(13) Cheng, J. L.; Hng, H. H.; Ng, H. Y.; Soon, P. C.; Lee, Y.W.J. Phys. Chem. Solids 2010, 71 (2), 90. doi: 10.1016/j.jpcs.2009.08.017
(14) Tillotson, T. M.; Gash, A. E.; Simpson, R. L.; Hrubesh, L.W.;Satcher, J. H.; Poco, J. F. J. Non-Cryst. Solids 2001, 285 (1-3),338. doi: 10.1016/S0022-3093(01)00477-X
(15) Stiegman, A. E.; Park, C. D.; Mileham, M.; van de Burgt, L. J.;Kramer, M. P. Propell. Explos. Pyrot. 2009, 34 (4), 293. doi: 10.1002/prep.v34:4
(16) Wang, R. H.; Zhang, J. L.;Wang, J. Y.; Pan, J. J.; Zhang, J.Energy Mater. 2011, 19 (6), 739. [王瑞浩, 张景林, 王金英,潘军杰, 张俊.含能材料, 2011, 19 (6), 739.]
(17) Liu, Z. R.; Liu, Y.; Fan, X. P.; Zhao, F. Q.; Yin, C. P. Chin. J. Expls. Propell. 2004, 27 (2), 63. [刘子如, 刘艳, 范夕萍,赵凤起, 阴翠梅. 火炸药学报, 2004, 27 (2), 63.]
(18) Jin, L. N.; Liu, Q.; Sun,W. Y. CrystEngComm 2012, 14 (22),7721.
(19) Vargeese, A. A.; Muralidharan, K. Mater. Chem. Phys. 2013,139 (2-3), 537. doi: 10.1016/j.matchemphys.2013.01.054
(20) Spitzer, D.; Comet, M.; Baras, C.; Pichot, V.; Piazzon, N.J. Phys. Chem. Solids 2010, 71 (2), 100. doi: 10.1016/j.jpcs.2009.09.010
(21) Hong,W. L.; Liu, J. H.; Chen, P.; Tian, D. Y.; Zhao, F. Q. J. Propul. Techn. 2001, 22 (3), 254. [洪伟良, 刘剑洪, 陈沛,田德余, 赵凤起. 推进技术, 2001, 22 (3), 254.]
(22) Apte, S. K.; Naik, S. D.; Sonawane, R. S.; Kalew, B. B. J. Am. Ceram. Soc. 2007, 90 (2), 412. doi: 10.1111/jace.2007.90.issue-2
(23) Jing, Z. H.;Wang, Y.;Wu, S. H. Chin. J. Inorg. Chem. 2005, 21 (1), 145. [景志红, 王燕, 吴世华. 无机化学学报, 2005, 21 (1), 145.]
(24) Wei, Z. X.;Wei, L.; Gong, L.;Wang, Y.; Hu, C.W. J. Hazard. Mater. 2010, 177 (1-3), 554. doi: 10.1016/j.jhazmat.2009.12.068
(25) Long, G. T.; Vyazovkin, S.; Brems, B. A.;Wight, C. A. J. Phys. Chem. B 2000, 104 (11), 2570. doi: 10.1021/jp993334n
(26) An, T.; Cao, H. Q.; Zhao, F. Q.; Ren, X. N.; Tian, D. Y.; Xu, S.Y.; Gao, H. X.; Tan, Y.; Xiao, L. B. Acta Phys. -Chim. Sin. 2012,28 (9), 2202. [安亭, 曹慧群, 赵凤起, 任晓宁, 田德余, 徐司雨, 高红旭, 谭艺, 肖立柏. 物理化学学报, 2012, 28 (9),2202.] doi: 10.3866/PKU.WHXB201206292
(27) Zhu, Y. L.; Huang, H.; Ren, H.; Jiao, Q. J. J. Energ. Mater.2013, 31 (3), 178. doi: 10.1080/07370652.2012.688788
(28) Yang, Y.; Xu, J. H.; Luo, F. S.; Han, A. J.; Li, F. S. Chin. J. Expls. Propell. 2002, 25 (1), 29. [杨毅, 徐建华, 罗付生, 韩爱军, 李凤生. 火炸药学报, 2002, 25 (1), 29.]
(29) Yao, L. N.; Feng, X. S.; Zhao, S. X.;Wang, C. L.;Wang, S. P.Chin. J. Expls. Propell. 2012, 35 (4), 15. [姚李娜, 封雪松, 赵省向, 王彩玲, 王淑萍. 火炸药学报, 2012, 35 (4), 15.]
(30) Zhao,W. Z.; Zheng, H. Y.; Lin, B. L. Chin. J. Expls. Propell.2008, 31 (5), 69. [赵文忠, 郑邯勇, 林碧亮. 火炸药学报,2008, 31 (5), 69.]

[1] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[2] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[3] Li-Juan PENG,Qian YAO,Jing-Bo WANG,Ze-Rong LI,Quan ZHU,Xiang-Yuan LI. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 745-754.
[4] Hai-Yang YU,Fang WANG,Qi-Chun LIU,Qing-Yu MA,Zheng-Gui GU. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 344-355.
[5] Cheng-Wei JIN,Ye WANG,Su-Ling XU,Jian-Jun ZHANG. Synthesis, Crystal Structures and Thermochemical Properties of Ternary Rare Earth Complexes Based on 3, 4-Diethoxybenzoic Acid and 2, 2'-Bipyridine[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2232-2240.
[6] Wen-Hui XIONG,Wen-Chao ZHANG,Chun-Pei YU,Rui-Qi SHEN,Jia CHENG,Jia-Hai YE,Zhi-Chun QIN. Preparation of Nanoporous CoFe2O4 and Its Catalytic Performance during the Thermal Decomposition of Ammonium Perchlorate[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2093-2100.
[7] Jian-Xia HUO,Su-Wei SONG,Cheng-Wei JIN,Ning REN,Li-Na GENG,Jian-Jun ZHANG. Synthesis, Characterization, Thermal Decomposition Mechanism and Properties of the [Eu(4-MOBA)3(terpy)(H2O)]2 Complex[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 901-906.
[8] Jian-Dong ZHUANG,Qin-Fen TIAN,Ping LIU. Bi2Sn2o7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 551-557.
[9] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1421-1429.
[10] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1105-1112.
[11] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 783-792.
[12] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 268-276.
[13] Qi. QI,Yu-Qiao. WANG,Sha-Sha. WANG,Hao-Nan. QI,Tao. WEI,Yue-Ming. SUN. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2332-2340.
[14] Hua-Feng. YU,Guo-Pei. ZHANG,Li-Na. HAN,Li-Ping. CHANG,Wei-Ren. BAO,Jian-Cheng. WANG. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2165-2173.
[15] Jing. LI,Li-Zhen. CHEN,Jian-Long. WANG,Guan-Chao. LAN,Huan. HOU,Man. LI. Crystal Structure and Thermal Decomposition Kinetics of Byproduct of Synthesis of RDX: 3, 5-Dinitro-1-oxygen-3, 5-diazacyclohexane[J]. Acta Phys. -Chim. Sin., 2015, 31(11): 2049-2056.