Please wait a minute...
Acta Phys. -Chim. Sin.  2013, Vol. 29 Issue (12): 2615-2623    DOI: 10.3866/PKU.WHXB201310221
CATALYSIS AND SURFACE SCIENCE     
Preparation of Three-Dimensionally Ordered Macroporous Composite Bi2O3/TiO2 and Its Photocatalytic Degradation of Crystal Violet under Multiple Modes
HUANG Xian-Dan1, LI Li1,2, WEI Qiu-Ying1, ZHANG Wen-Zhi1, LU Lu1
1 College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang Province, P. R. China;
2 Key Laboratory of Composite Modified Material of Colleges in Heilongjang Provence, Qiqihar 161006, Heilongjiang Province, P. R. China
Download:   PDF(2505KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Polystyrene latex (PS) spheres and EO20PO70O20 (P123) were used as dual template agents, with TiO2 as the matrix, to prepare a three-dimensionally ordered macroporous (3DOM) composite Bi2O3/TiO2, using a sol-gel method and post-processing calcination. The phase structures, chemical composition, morphology, and surface physicochemical properties were characterized using X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), ultraviolet-visible diffuse reflectance (UV-Vis DRS) and X-ray photoelectron spectroscopies (XPS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), and N2 adsorption-desorption measurements. The results show that the composite is well crystallized and has a highly ordered porous structure with mesoporous walls; it is a 3DOM material. The light absorption of 3DOM-Bi2O3/TiO2 is red-shifted by about 60 nm to the visible region compared with TiO2. In the photocatalytic degradation of crystal violet using various methods, namely ultraviolet, visible-light, and microwave-assisted irradiation, the activity of 3DOM-Bi2O3/TiO2 is significantly higher than those of P25, Bi2O3, and Bi2O3/TiO2. The 3DOM-Bi2O3/TiO2 composite also shows good photocatalytic activity in the degradations of various dyes under ultraviolet irradiation. The 3DOM-Bi2O3/TiO2 activity is well retained after three cycles.



Key wordsPolystyrene      Three-dimensionally ordered macroporous      Bi2O3/TiO2      Photocatalysis      Crystal violet     
Received: 16 July 2013      Published: 22 October 2013
MSC2000:  O644  
  O643  
Fund:  

The project was supported by the National Natural Science Foundation of China (21376126), Natural Science Foundation of Heilongjiang Province, China (B201106), Scientific Research of Heilongjiang Province Educaton Department (12511592), Government of Heilongjiang Province Postdoctoral Grants, China (LBH-Z11108), and Open Project of Green Chemical Technology Key Laboratory of Heilongjing Province College, China (2013 year).

Corresponding Authors: LI Li     E-mail: qqhrll@163.com
Cite this article:

HUANG Xian-Dan, LI Li, WEI Qiu-Ying, ZHANG Wen-Zhi, LU Lu. Preparation of Three-Dimensionally Ordered Macroporous Composite Bi2O3/TiO2 and Its Photocatalytic Degradation of Crystal Violet under Multiple Modes. Acta Phys. -Chim. Sin., 2013, 29(12): 2615-2623.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201310221     OR     http://www.whxb.pku.edu.cn/Y2013/V29/I12/2615

(1) Gan, Y. P.; Qin, H. P.; Huang, H.; Tao, X. Y.; Fang, J.W.;Zhang,W. K. Acta Phys. -Chim. Sin. 2013, 29 (2), 403. [甘永平, 秦怀鹏, 黄辉, 陶新永, 方俊武, 张文魁. 物理化学学报,2013, 29 (2), 403.] doi: 10.3866/PKU.WHXB201211022
(2) Cao, X. X.; Chen, Y. L.; Lin, B. Z.; Gao, B. F. J. Inorg. Mater.2012, 27 (12), 1302. [操小鑫, 陈亦琳, 林碧洲, 高碧芬. 无机材料学报, 2012, 27 (12), 1302.]
(3) Qiu,W.; Ren, C. J.; Gong, M. C.; Hou, Y. Z.; Chen, Y. Q. Acta Phys. -Chim. Sin. 2011, 27 (6), 1487. [仇伟, 任成军, 龚茂初, 侯云泽, 陈耀强. 物理化学学报, 2011, 27 (6), 1487.] doi: 10.3866/PKU.WHXB20110621
(4) Zhai, X. H.; Long, H. J.; Dong, J. Z.; Cao, Y. A. Acta Phys. - Chim. Sin. 2010, 26 (3), 663. [翟晓辉, 龙绘锦, 董江舟, 曹亚安. 物理化学学报, 2010, 26 (3), 663.] doi: 10.3866/PKU.WHXB20100317
(5) Li, A. C.; Li, G. H.; Zheng, Y.; Ma, L. L.; Zhen, Y. J. Acta Phys. -Chim. Sin. 2012, 28 (2), 458. [李爱昌, 李桂花, 郑琰, 马玲玲, 郑彦俊. 物理化学学报, 2012, 28 (2), 458.] doi: 10.3866/PKU.WHXB201112081
(6) Zou,W.; Hao,W. C.; Xin, X.;Wang, T. M. Chin. J. Inorg. Chem. 2009, 25 (11), 1971. [邹文, 郝伟昌, 信心, 王天民. 无机化学学报, 2009, 25 (11), 1971.]
(7) Ma, Z. Y.; Yao, B. H.; He, Y. Q.; Bai, H. N.; Gao, Y. H. J. Funct. Mater. 2013, 4 (44), 507. [马占营, 姚秉华, 何抑清, 白海妮,高奕红. 功能材料, 2013, 4 (44), 507.]
(8) Bessekhouad, Y.; Robert, D.;Weber, J. Y. Catal. Today 2005,101 (4), 315.
(9) Song, L. M.; Zhang, S. J.;Wu, X. Q.;Wei, Q.W. J. Am. Chem. Soc. 2012, 51 (13), 4922.
(10) Ghule, L. A.; Shirke, B. S.; Sapnar, K. B.; Dhole, S. D.;Hankare, P. P.; Garadkar, K. M. J. Mater. Sci.: Mater. Electron.2011, 22 (8), 1120. doi: 10.1007/s10854-010-0270-0
(11) Cho, S.; Jang, J.W.; Jung, S. H.; Lee, B. R.; Oh, E.; Lee, K. H.Langmuir 2009, 25 (6), 3825. doi: 10.1021/la804009g
(12) Wan, L. S.; Lv, J.; Ke, B. B.; Xu, Z. K. J. Am. Chem. Soc. 2010,2 (12), 3759.
(13) Velev, O. D.; Kaler, E.W. Adv. Mater. 2000, 12 (7), 531.
(14) Klein, S. M.; Manoharan, V. N.; Pine, D. J. Langmuir 2005, 21 (15), 6669. doi: 10.1021/la0469957
(15) Manoharan, V. N.; Imhof, A.; Thorne, J. D. Adv. Mater. 2001, 13 (6), 447.
(16) Li, L.; Zhao, Y. H.; Li, E. S.; Z, N.; Ma, H. Y.; Liu, B. Chem. J. Chin. Univ. 2011, 32 (6), 1323. [李莉, 赵月红, 李恩帅,禚娜, 马慧媛, 刘波. 高等学校化学学报, 2011, 32 (6),1323.]
(17) Li, L.; Zhao, Y. H.; Lu, L.; Ma, H. Y.; Liu, B. Chin. J. Inorg. Chem. 2012, 28 (6), 1131. [李莉, 赵月红, 路露, 马慧媛,刘波. 无机化学学报, 2012, 28 (6), 1131.]
(18) Deng, Z.W.; Chen, M.; Zhou, S. X.; You, B.;W, L. M.Langmuir 2006, 22 (14), 6403. doi: 10.1021/la060944n
(19) Ma, T. Y.; Zhang, X. J.; Shao, G. S.; Cao, J. L.; Yuan, Z. Y. J. Phys. Chem. C 2008, 112 (8), 3090. doi: 10.1021/jp710636x
(20) Shim, S. E.; Cha, Y. J.; Byun, J. M.; Choe, S. J. Appl. Polym. Sci. 1999, 71 (13), 2259.
(21) Li, L.; Zhang, X. F.; Ma, Y.; Zhang,W. Z.; Guo, Y. X. CIESC Journal 2008, 59 (12), 3067. [李莉, 张秀芬, 马禹, 张文治, 郭一荇. 化工学报, 2008, 59 (12), 3067.]
(22) Yang, J. C.; Michael, J. J.; Jimmy,W. M. Polymer 2002, 43 (19),5125. doi: 10.1016/S0032-3861(02)00390-7
(23) Fang, J. F.; Xuan, Y. M.; Li, Q. Sci. China Technol. Sci. 2010,53 (11), 3088. doi: 10.1007/s11431-010-4110-5
(24) Demirors, A. F.; Eser, B. E.; Omer, D. Langmuir 2005, 21 (9),4156. doi: 10.1021/la047136l
(25) Shi, J. Y.; Chen, J.; Feng, Z. C.; Chen, T.; Lian, Y. X.;Wang, X.L.; Li, C. J. Phys. Chem. C 2007, 111 (2), 693. doi: 10.1021/jp065744z
(26) Wang, T.; Jiang, X.;Wu, Y. X. Ind. Eng. Chem. Res. 2009, 48 (13), 6224. doi: 10.1021/ie801974y
(27) Vu, D.; Li, X.; Li, Z. Y.;Wang, C. J. Chem. Eng. Data 2013, 58 (1), 71. doi: 10.1021/je301017q
(28) Bian, Z. F.; Zhu, J.;Wang, S. H. J. Phys. Chem . C 2008, 112 (16), 6258.
(29) Wang, C. M.; Sun, Z. Y.; Ma, L. Y.; Su, M. Simultaneous Anal. Chem. 2011, 83 (6), 2217.
(30) Abdallah,W. A.; Taylor, S. D. J. Phys. Chem. C 2008, 112 (48),18963.
(31) Harison, P. G.; Lloy, N. C.; Darill,W. J. Phys. Chem. B 1998,102 (52), 10672. doi: 10.1021/jp9822135
(32) Kang, S. H.; Kim, J. Y.; Kim, Y. K. J. Phys. Chem. C 2007, 111 (26), 9614. doi: 10.1021/jp071504n
(33) Vaidya, R.; Simonson, R J.; Dimos, D. Langmuir 1996, 12(11)2830. doi: 10.1021/la951072k
(34) Srinivasan, M.; White, T. Environ. Sci. Technol. 2007, 41 (12),4405. doi: 10.1021/es070160b
(35) Sun,W.; Zhou, S. X.; You, B.;Wu, L. M. Chem. Mater. 2012,24 (19), 3800. doi: 10.1021/cm302464g
(36) Harish, K. N.; Naik, B.; Prashanth Kumar, P. N.; Viswanath, R.ACS Sustainable Chem. Eng. 2013, 1 (9), 1143. doi: 10.1021/sc400060z
(37) Chen, Z. X.; Li, D. Z.; Zhang,W. J.; Shao, Y.; Chen, T.W.; Sun,M.; Fu, X. Z. J. Phys. Chem. C 2009, 113 (11), 4433. doi: 10.1021/jp8092513
(38) Yang, X. F.; Cui, H.Y.; Li, Y.; Qin, J. L.; Zhang, R. X.; Tang, H.ACS Catal. 2013, 3 (3), 363. doi: 10.1021/cs3008126
(39) Li, L.; Ji, Y.; Lu, D.; Zhao, Y. H. Chem. Online 2010, 6 (73),645. [李莉, 计远, 陆丹, 赵月红. 化学通报, 2010, 6 (73), 645.]
(40) Chen, H. Z.; Yang, S. G.; Y, K.; J, Y. M.; Sun, C. J. Phys. Chem. A 2011, 115 (14), 3034. doi: 10.1021/jp109948n
(41) Fan, H. M.; Li, H. Y.; Liu, B. K.; Lu, Y. C.; Xie, T. F.;Wang, D.J. Appl. Mater. Interfaces 2012, 4 (9), 4853. doi: 10.1021/am301199v
(42) Sarkar, D.; Ghosh, C. K.; Mukherjee, S.; Chattopadhyay, K. K.Appl. Mater. Interfaces 2013, 5 (2), 331. doi: 10.1021/am302136y
(43) Georgekutty, R.; Seery, M. K.; Pillai, S. C. J. Phys. Chem. C2008, 112 (35), 13563. doi: 10.1021/jp802729a
(44) Kim, S.; Park, H.; Choi,W. J. Phys. Chem. B 2004, 108 (20),6402.
(45) Chen, C. C.;Wang, Q.; Lei, P. X.; Song,W. J.; Ma,W. H.; Zhao,J. C. Environ. Sci. Technol. 2006, 40 (12), 3965. doi: 10.1021/jp049789g

[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[4] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[5] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[6] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[7] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[8] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[9] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[10] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[11] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[12] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.
[13] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.
[14] Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 737-744.
[15] Jian-Dong ZHUANG,Qin-Fen TIAN,Ping LIU. Bi2Sn2o7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 551-557.