Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (12): 2513-2522    DOI: 10.3866/PKU.WHXB201310233
Coordination Kinetics of Fe3+ with Membranes Based on Modified PAN Nanofibers with Different Diameters, and Catalytic Effect of Their Complexes on Decomposition of Organic Dye
ZHAO Xue-Ting1, DONG Yong-Chun1,2, CHENG Bo-Wen1, KANG Wei-Min1
1 Division of Textile Chemistry & Ecology, School of Textiles, Tianjin Polytechnic University, Tianjin 300387, P. R. China;
2 Key Laboratory of Advanced Textile Composites, Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, P. R. China
Download:   PDF(817KB) Export: BibTeX | EndNote (RIS)      


Membranes produced from modified polyacrylonitrile (PAN) nanofibers with different diameters were prepared by electrospinning and amidoximation. They were then used as ligands to coordinate with Fe3+ for preparing modified PAN nano-fibrous membrane Fe complexes. The coordination kinetics of three modified PAN nano-fibrous membranes with Fe3+ were studied, and the effects of temperature and the Fe3+ initial concentration on the coordination kinetics were also examined. Finally, the catalytic activities of the three modified PAN nano- fibrous membrane Fe complexes were evaluated as heterogeneous Fenton catalysts in the degradation of an organic dye. The effect of fiber diameter on the catalytic activity of the complexes was investigated. The results indicated that within the observed temperature and concentration ranges, the equilibrium data for the coordination of Fe3+ with the modified PAN nano-fibrous membranes correlated with the Langmuir and Freundlich isotherm equations, but the coordination kinetics showed better agreement with the Lagergren second-order equation. Modified PAN nanofibrous membranes with small diameters showed higher Fe- coordinating capacities and reaction rate constants under the same conditions, indicating that they reacted with Fe3+ more easily than the others did. Better catalytic activities for dye degradation were found for the three modified PAN nanofibrous membrane Fe complexes in the dark, and these were further improved by light irradiation. The catalytic activities of the complexes were significantly affected by the nanofiber diameter. The complex prepared using a modified PAN nanofibrous membrane with fibers of an appropriate diameter exhibited the best catalytic activity.

Key wordsPAN nano-fibrous membrane      Fe3+      Coordination kinetics      Photocatalysis      Fenton reaction      Dye degradation     
Received: 12 August 2013      Published: 23 October 2013
MSC2000:  O643  

The project was supported by the Tianjin Municipal Science and Technology Committee for a Research Program of Application Foundation and Advanced Technology, China (11JCZDJC24600, 11ZCKFGX03200) and National Natural Science Foundation of China (20773093, 51102178).

Corresponding Authors: DONG Yong-Chun     E-mail:
Cite this article:

ZHAO Xue-Ting, DONG Yong-Chun, CHENG Bo-Wen, KANG Wei-Min. Coordination Kinetics of Fe3+ with Membranes Based on Modified PAN Nanofibers with Different Diameters, and Catalytic Effect of Their Complexes on Decomposition of Organic Dye. Acta Phys. Chim. Sin., 2013, 29(12): 2513-2522.

URL:     OR

(1) Janiak, C. Chem. Soc. Dalton Trans. 2003, 14 (6), 2781.
(2) Vassilev, K.; Turmanova, S. Polym. Bull. 2008, 60 (2), 243.
(3) Wu, S. H.; Xie, Q. X.; Zhu, C. Y.; Huang,W. P.; Yang, X. L.;Wu,W. Y. Polym. Mater. Sci. Eng. 2000, 16 (3), 1. [吴世华,解勤兴, 朱常英, 黄唯平, 杨秀檩, 吴文艳. 高分子材料科学与工程, 2000, 16 (3), 1.]
(4) Espenson, J. H. Chemical Kinetics and Reaction Mechanisms,2nd ed.; McGraw-Hill Inc: New York, 1995; pp 1-3.
(5) Xu, Y. Chemical Reaction Kinetics; Chemical Industry Press:Beijing, 2005; pp 151-153. [许越. 化学反应动力学. 北京:化学工业出版社, 2005: 151-153.]
(6) Zhang, D. Y.;Wu, Z. C.; Zhou, K.; Chen, P. G. Polym. Mater. Sci. Eng. 2008, 24 (6), 38. [张宇东, 吴之传, 周凯, 陈培根.高分子材料科学与工程, 2008, 24 (6), 38.]
(7) Dong, Y. C.;Wu, J. N.; Sun, S. T.; Zheng, X.; Han, Z. B.; Liu,C. Y. Journal of Sichuan University (Engineering Science Edition) 2011, 43 (1), 173. [董永春, 武金娜, 孙苏婷, 郑戌,韩振邦, 刘春燕. 四川大学学报(工程科学版), 2011, 43 (1),173.]
(8) Han, Z. B.; Dong, Y. C.; Liu, C. Y. Chem. J. Chin. Univ. 2010,31 (5), 986. [韩振邦, 董永春, 刘春燕. 高等学校化学学报,2010, 31 (5), 986.]
(9) Bagheri, B.; Abdouss, M.; Aslzadeh, M. M.; Shoushtari, A. M.Iran. Polym. J. 2010, 19 (12), 911.
(10) Feng, Q.;Wang, Q. Q.; Tang, B.;Wei, A. F.;Wang, X. Q.;Wei,Q. F.; Huang, F. L.; Cai, Y. B.; Hou, D. Y.; Bi, S. M. Polym. Int.2013, 62 (2), 251. doi: 10.1002/pi.2013.62.issue-2
(11) Kampalanonwat, P.; Supaphol, P. ACS Appl. Mater. Inter. 2010,2 (2), 3619.
(12) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A. 2003, 242 (1), 123. doi: 10.1016/S0926-860X(02)00511-2
(13) Ishtchenko, V. V.; Huddersman, K. D.; Vitkovskaya, R. F. Appl. Catal. A 2003, 242 (2), 221. doi: 10.1016/S0926-860X(02)00512-4
(14) Vitkovskaya, R. F.; Rumynskaya, I. G.; Romanova, E. P.;Tereshchenko, L. Y. Fiber Chem. 2003, 35 (3), 202. doi: 10.1023/A:1026109923284
(15) Dong, Y. C.; Du, F.; Han, Z. B. Acta Phys. -Chim. Sin. 2008, 24 (11), 2114. [董永春, 杜芳, 韩振邦. 物理化学学报, 2008,24 (11), 2114.] doi: 10.3866/PKU.WHXB20081130
(16) Dong, Y. C.; Han, Z. B.; Liu, C. Y.; Du, F. Sci. Total. Environ.2010, 408 (10), 2245. doi: 10.1016/j.scitotenv.2010.01.020
(17) Han, Z. B.; Dong, Y. C.; Dong, S. M. J. Hazard. Mater. 2011,189 (1-2), 241. doi: 10.1016/j.jhazmat.2011.02.026
(18) Dong, Y. C.; Dong,W. J.; Han, Z. B. Catal. Today 2011, 175 (1),299. doi: 10.1016/j.cattod.2011.04.026
(19) Yang, X.W.; Luo, Y. Y. Textbook of Chemical Products: Dyestuffs; Chemical Industry Press: Beijing, 2005; pp 156-541.[杨新玮, 罗钰言. 化工产品手册: 染料. 北京: 化学工业出版社, 2005: 156-541.]
(20) Li, S. F.; Chen, J. P.;Wu,W. T. J. Mol. Catal. B 2007, 47 (3-4),117. doi: 10.1016/j.molcatb.2007.04.010
(21) Feng, Q.;Wang, X. Q.;Wei, Q. F.; Hou, D. Y.;Wei, L.; Liu, X.H.;Wang, Z. Q. Fiber. Polym. 2011, 12 (8), 1025. doi: 10.1007/s12221-011-1025-0
(22) Neghlani, P. K.; Rafizadeh, M.; Taromi, F. A. J. Hazard. Mater.2011, 186 (1), 182. doi: 10.1016/j.jhazmat.2010.10.121
(23) Lee, K. H.; Kim, H. Y.; Khil, M. S.; Ra, Y. M.; Lee, D. R.Polym. 2003, 44 (4), 1287. doi: 10.1016/S0032-3861(02)00820-0
(24) Vassilev, K.; Turmanova, S. Polym. Bull. 2005, 1 (5), 575.
(25) Qin, X. H.;Wang, X.W.; Hu, Z. M.; Liu, Z. F.;Wang, S. Y.Journal of Donghua University (Natural Science) 2005, 31 (6),16. [覃小红, 王新威, 胡祖明, 刘兆峰, 王善元. 东华大学学报(自然科学版), 2005, 31 (6), 16.]
(26) Yordem, O. S.; Papila, M.; Menceloglu, Y. Z. Mater. Des. 2008,29 (1), 34. doi: 10.1016/j.matdes.2006.12.013
(27) Wang, N.; Burugapalli, K.; Song,W.; Hall, J.; Moussy, F.;Zheng, Y. D.; Ma, Y. X.;Wu, Z. T.; Li, K. J. Membr. Sci. 2013,427 (10), 207.
(28) Chen, X.; Chen, N. L. Journal of DongHua University (Natural Science) 2009, 35 (1), 30. [陈霄, 陈南梁. 东华大学学报(自然科学版), 2009, 35 (1), 30.]

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.
[11] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. Chim. Sin., 2016, 32(6): 1519-1526.
[12] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. Chim. Sin., 2016, 32(3): 728-736.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. Chim. Sin., 2016, 32(3): 737-744.
[14] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. Chim. Sin., 2016, 32(2): 551-557.
[15] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(12): 2841-2870.