Please wait a minute...
Acta Phys. Chim. Sin.  2013, Vol. 29 Issue (12): 2608-2614    DOI: 10.3866/PKU.WHXB201310312
Preparation and Visible Light Photocatalytic Activity of 3D-NiO/Bi7.47Ni0.53O11.73 Photocatalysts
GUI Ming-Sheng, WANG Peng-Fei, YUAN Dong, TANG Miao-Miao
College of Materials and Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, Sichuan Province, P. R. China
Download:   PDF(2293KB) Export: BibTeX | EndNote (RIS)       Supporting Info


Three-dimensional (3D)-NiO/Bi7.47Ni0.53O11.73 (BiNiO) microspheres were synthesized by a mixed solvothermal process in the presence of urea. The catalysts were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), and photodegradation of methyl orange (MO). The results show that the composite catalysts are composed of NiO nanosheets and 3D-NiO/Bi7.47Ni0.53O11.73 microspheres. The sample BiNiO-300, which was prepared by heating the precursor at 300 ℃ for 2 h, had the best photocatalytic activity: after visible-light irradiation for 3 h, the decolorization of an MO solution was 98%.

Key wordsComposite      Photocatalytic      Visible light      Methyl orange     
Received: 13 September 2013      Published: 31 October 2013
MSC2000:  O643.3  

The project was supported by the Education Department Scientific Research Projects of Sichuan Province, China (13ZB0137), Talents Project of Sichuan University of Science & Engineering, China (2012RC05), and Student Research Program of Sichuan Province, China.

Corresponding Authors: GUI Ming-Sheng     E-mail:
Cite this article:

GUI Ming-Sheng, WANG Peng-Fei, YUAN Dong, TANG Miao-Miao. Preparation and Visible Light Photocatalytic Activity of 3D-NiO/Bi7.47Ni0.53O11.73 Photocatalysts. Acta Phys. Chim. Sin., 2013, 29(12): 2608-2614.

URL:     OR

(1) Chen, X.; Mao, S. Chem. Rev. 2007, 107, 2891. doi: 10.1021/cr0500535
(2) Kozhummal, R.; Yang, Y.; Güder, F.; Hartel, A.; Lu, X.;Küçükbayrak, U. M.; Mateo-Alonso, A.; Elwenspoek, M.;Zacharias, M. ACS Nano 2012, 6, 7133. doi: 10.1021/nn302188q
(3) Yang, H. P.; Zhang, Y. C.; Fu, X. F.; Song, S. S.;Wu, J. M. Acta Phys. -Chim. Sin. 2013, 29, 1327. [杨汉培, 张颖超, 傅小飞,宋双双, 吴俊明. 物理化学学报, 2013, 29, 1327.] doi: 10.3866/PKU.WHXB201303212
(4) Hou, J. G.; Cao, R.;Wang, Z.; Jiao, S. Q.; Zhu, H. M.J. Hazard. Mater. 2012, 217-218, 177.
(5) Hou, J. G.;Wang, Z.; Jiao, S. Q.; Zhu, H. M. Crystengcomm2012, 14, 5923. doi: 10.1039/c2ce25504a
(6) Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.;Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a
(7) Hou, J. G.; Cao, R.;Wang, Z. Dalton Trans. 2011, 40, 4038. doi: 10.1039/c0dt01847c
(8) Yi, Z. G.; Ye, J. H.; Kikugawa, N.; Kako, T.; Ouyang, S. X. Nat. Mater. 2010, 9, 559. doi: 10.1038/nmat2780
(9) Hou, J. G.;Wang, Z.; Kan,W. B.; Jiao, S. Q.; Zhu, H. M.;Kumar, R. V. J. Mater. Chem. 2012, 22, 7291. doi: 10.1039/c2jm15791h
(10) Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8,76. doi: 10.1038/nmat2317
(11) Fujishima, A.; Honda, K. Nature 1972, 238, 37.
(12) Yu, J. C.; Zhang, L. Z.; Zheng, Z. Chem. Mater. 2003, 15,2280. doi: 10.1021/cm0340781
(13) Yang, G. R.; Zhang, Q.; Chang,W.; Yan,W. Journal of Alloys and Compounds 2013, 580, 29. doi: 10.1016/j.jallcom.2013.05.083
(14) Gui, M. S.; Zhang,W. D. Journal of Physics and Chemistry of Solids 2012, 73, 1342. doi: 10.1016/j.jpcs.2012.06.009
(15) Yang, X. F.; Cui, H. Y.; Yang, L.; Qin, J. L.; Zhang, R. X.; Tang,H. ACS Catal. 2013, 3, 363. doi: 10.1021/cs3008126
(16) Chen, H. Y.; Lo, S. L.; Ou, H. H. Applied Catalysis B: Environmental 2013, 142-143, 65.
(17) Jagadale, T. C.; Takale, S. P.; Sonawane, R. S.; Joshi, H. M.;Patil, S. I.; Kale, B. B.; Ogale, S. B. J. Phys. Chem. C 2008,112, 14595. doi: 10.1021/jp803567f
(18) Yang, L. B.; Jiang, X.; Ruan,W. D.; Yang, J. X.; Zhao, B.; Xu,W. Q.; Lombardi, J. R. J. Phys. Chem. C 2009, 113, 16226. doi: 10.1021/jp903600r
(19) Wang, J. M.; Li, C.; Zhuang, H.; Zhang, J. H. Food Control2013, 34, 372. doi: 10.1016/j.foodcont.2013.04.046
(20) Ye, L. Q.; Liu, J. Y.; Zhuo, J.; Peng, T. Y.; Zan, L. Applied Catalysis B: Environmental 2013, 142-143, 1.
(21) Lin, H.W.; Liu, H. B.; Qian, X. M.; Lai, S.W.; Li, Y. J.; Chen,N.; Ouyang, C. B.; Che, C. M.; Li, Y. L. Inorg. Chem. 2011, 50,7749. doi: 10.1021/ic200900a
(22) Su, J. Z.; Guo, L. J.; Bao, N. Z.; Grimes, C. A. Nano Lett. 2011,11, 1928. doi: 10.1021/nl2000743
(23) Qian, X. M.; Liu, H. B.; Chen, N.; Zhou, H. Q.; Sun, L. F.; Li,Y. J.; Li, Y. L. Inorg. Chem. 2012, 51, 6771. doi: 10.1021/ic300471j
(24) Zhao, G.; Liu, S.W.; Lu, Q. F.; Xu, F. X.; Su, H. Y. Journal of Alloys and Compounds 2013, 578, 12. doi: 10.1016/j.jallcom.2013.05.022
(25) Zhang, J.; Cui, H.;Wang, B.; Li, C.; Zhai, J. P.; Li, Q. Chemical Engineering Journal 2013, 223, 737. doi: 10.1016/j.cej.2012.12.065
(26) Zhang, P.; Shao, C. L.; Zhang, M. Y.; Guo, Z. C.; Mu, J. B.;Zhang, Z. Y.; Zhu, X.; Liu, Y. C. Journal of Hazardous Materials 2012, 217-218, 422.
(27) An, J. J.; Zhu, L. H.;Wang, N.; Song, Z.; Yang, Z. Y.; Du, D. Y.;Tang, H. Q. Chemical Engineering Journal 2013, 219, 225. doi: 10.1016/j.cej.2013.01.013
(28) Zhu, X. Q.; Zhang, J. L.; Chen, F. Applied Catalysis B: Environmental 2011, 102, 316. doi: 10.1016/j.apcatb.2010.12.019
(29) Gui, M. S.; Zhang,W. D. Nanotechnology 2011, 22,265601. doi: 10.1088/0957-4484/22/26/265601
(30) Shang, M.;Wang,W. Z.; Zhang, L.; Sun, S. M.;Wang, L.;Zhou, L. J. Phys. Chem. C 2009, 113, 14727. doi: 10.1021/jp9045808
(31) Ge, M.; Li, Y. F.; Liu, L.; Zhou, Z.; Chen,W. J. Phys. Chem. C2011, 115, 5220. doi: 10.1021/jp108414e
(32) Shang, M.;Wang,W. Z.; Xu, H. L. Cryst. Growth Des. 2009, 9,991. doi: 10.1021/cg800799a
(33) Huang, Y.; Huang, X. L.; Lian, J. S.; Xu, D.;Wang, L. M.;Zhang, X. B. J. Mater. Chem. 2012, 22, 2844.
(34) Zhao, D.; Chen, C. C.; Zhao, J. C. J. Phys. Chem. C 2009, 113,13160. doi: 10.1021/jp9002774
(35) Marto, J.; Marcos, P. S.; Trindade, T.; Labrincha, J. A.J. Hazard. Mater. 2009, 163, 36. doi: 10.1016/j.jhazmat.2008.06.056
(36) Wang, H.; Xie, J.; Duan, M. Chin. J. Inorg. Chem. 2011, 27,321. [王虎, 谢娟, 段明, 无机化学学报, 2011, 27,321.]
(37) Li, M. Y.; Shang,W.;Wang, X. L. China Environment Science2009, 29, 512. [李明玉, 尚微, 王心乐. 中国环境科学,2009, 29, 512.]

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] ZHOU Liang, ZHANG Xue-Hua, LIN Lin, LI Pan, SHAO Kun-Juan, LI Chun-Zhong, HE Tao. Visible-Light Photocatalytic Reduction of CO2 by CoTe Prepared via a Template-Free Hydrothermal Method[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1884-1890.
[3] SONG Chun-Dong, ZHANG Jing, GAO Ying, LU Yuan-Yuan, WANG Fang-Fang. Synthesis Direct Z-Scheme CuS-WO3 Photocatalysts Based on an Element-Reaction Route and Their Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1891-1897.
[4] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Phys. Chim. Sin., 2017, 33(8): 1715-1720.
[5] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[6] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1492-1498.
[7] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. Chim. Sin., 2017, 33(6): 1230-1235.
[8] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Phys. Chim. Sin., 2017, 33(5): 968-975.
[9] RUAN Mao-Mao, SONG Le-Xin, WANG Qing-Shan, XIA Juan, YANG Zun, TENG Yue, XU Zhe-Yuan. Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(5): 1033-1042.
[10] LI Jiao, CHEN Zhong. First-Principles Study on the Electronic and Photocatalytic Properties of Ag3XO4 (X = P, As, V)[J]. Acta Phys. Chim. Sin., 2017, 33(5): 941-948.
[11] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. Chim. Sin., 2017, 33(3): 554-562.
[12] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. Chim. Sin., 2017, 33(2): 435-440.
[13] JING Tao, DAI Ying. Development of Solid Solution Photocatalytic Materials[J]. Acta Phys. Chim. Sin., 2017, 33(2): 295-304.
[14] QUAN Quan, XIE Shun-Ji, WANG Ye, XU Yi-Jun. Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites:Basic Principle,Recent Progress,and Future Perspective[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2404-2423.
[15] ZHANG Yun-Long, ZHANG Yu-Zhi, SONG Li-Xin, GUO Yun-Feng, WU Ling-Nan, ZHANG Tao. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2284-2292.