Please wait a minute...
Acta Phys. Chim. Sin.  2014, Vol. 30 Issue (1): 135-140    DOI: 10.3866/PKU.WHXB201311052
Synthesis and Characterization of Boron-Doped SiC for Visible Light Driven Hydrogen Production
DONG Li-Li1,2, WANG Ying-Yong1, TONG Xi-Li1, JIN Guo-Qiang1, GUO Xiang-Yun1
1 State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(923KB) Export: BibTeX | EndNote (RIS)      


Boron-doped β-SiC (BxSiC) photocatalysts were prepared by in-situ carbothermal reduction, and their photocatalytic performances for H2 evolution under visible light irradiation were investigated. The crystal structure, surface property, morphology, and band gap structure of the BxSiC photocatalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and ultraviolet-visible absorption spectroscopy. The characterization results indicate that B atoms have doped into the SiC lattice and substituted Si sites, leading to the formation of a shallow acceptor level above the valence band of SiC, resulting in a narrowed band gap energy. The shallow acceptor level acts as a hole trap, preventing the recombination of photo-excited electrons and holes. Therefore, the photocatalytic H2 evolution activity of B-doped SiC was greatly improved compared with that of SiC. The highest hydrogen evolution rate was obtained when the B/Si molar ratio was 0.05.

Key wordsβ-SiC      B doping      Photocatalysis      Hydrogen evolution      Visible light     
Received: 22 August 2013      Published: 05 November 2013
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (21173251, 21203233), Innovation Fund of Institute of Coal Chemistry, Chinese Academy of Sciences (Y1SC6R1991), and State Key Laboratory of Coal Conversion, China (2013BWZ006).

Corresponding Authors: WANG Ying-Yong     E-mail:
Cite this article:

DONG Li-Li, WANG Ying-Yong, TONG Xi-Li, JIN Guo-Qiang, GUO Xiang-Yun. Synthesis and Characterization of Boron-Doped SiC for Visible Light Driven Hydrogen Production. Acta Phys. Chim. Sin., 2014, 30(1): 135-140.

URL:     OR

(1) Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue,Y.; Domen, K. Nature 2006, 440, 295. doi: 10.1038/440295a
(2) Nowotny, J.; Sorrell, C. C.; Sheppard, L. R.; Bak, T. Int. J. Hydrog. Energy 2005, 30, 521. doi: 10.1016/j.ijhydene.2004.06.012
(3) Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev.2010, 110, 6503. doi: 10.1021/cr1001645
(4) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253. doi: 10.1039/b800489g
(5) Wang, Q.; Liu, H.; Jiang, L.; Yuan, J.; Shangguan,W. Catal. Lett. 2009, 131, 160. doi: 10.1007/s10562-009-9949-3
(6) Gao, Y. T.;Wang, Y. Q.;Wang, Y. X. React. Kinet. Catal. Lett.2007, 91, 12.
(7) Hao, J. Y.;Wang, Y. Y.; Tong, X. L.; Jin, G. Q.; Guo, X. Y. Int. J. Hydrog. Energy 2012, 37, 15038. doi: 10.1016/j.ijhydene.2012.08.021
(8) Yang, J. J.; Zeng, X. P.; Chen, L. J.; Yuan,W. X. Appl. Phys. Lett. 2013, 102, 083101. doi: 10.1063/1.4792695
(9) Wu, X. L.; Xiong, S. J.; Zhu, J.;Wang, J.; Shen, J. C.; Chu, P. K.Nano Lett. 2009, 9, 4053. doi: 10.1021/nl902226u
(10) Li, Y. X.; Ma, G. F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Appl. Surf. Sci. 2008, 254, 6831. doi: 10.1016/j.apsusc.2008.04.075
(11) Ruschenschmidt, K.; Bracht, H.; Laube, M.; Stolwijk, N. A.;Pensl, G. Physica B 2001, 308, 734.
(12) Persson, C.; Lindefelt, U.; Sernelius, B. E. J. Appl. Phys. 1999,86, 4419. doi: 10.1063/1.371380
(13) Agathopoulos, S. Ceram. Int. 2012, 38, 3309. doi: 10.1016/j.ceramint.2011.12.040
(14) Shimoda, K.; Park, J. S.; Hinoki, T.; Kohyama, A. Appl. Surf. Sci. 2007, 253, 9450. doi: 10.1016/j.apsusc.2007.06.023
(15) Oswald, S.;Wirth, H. Surf. Interface Anal. 1999, 27, 136.
(16) Seo,W. S.; Koumoto, K.; Arai, S. J. Am. Ceram. Soc. 1998, 81,1255.
(17) Cerovic, L.; Milonjic, S. K.; Zec, S. P. Ceram. Int. 1995, 21,271. doi: 10.1016/0272-8842(95)99793-B
(18) Chen, J.; Tang,W.; Xin, L.; Shi, Q. Appl. Phys. A-Mater. 2011,102, 213. doi: 10.1007/s00339-010-5943-2
(19) Zhou,W. M.; Yan, L. J.;Wang, Y.; Zhang, Y. F. Appl. Phys. Lett.2006, 89, 013105. doi: 10.1063/1.2219139
(20) Fukumoto, A. Phys. Rev. B 1996, 53, 4458. doi: 10.1103/PhysRevB.53.4458
(21) Weingartner, R.; Bickermann, M.; Bushevoy, S.; Hofmann, D.;Rasp, M.; Straubinger, T. L.;Wellmann, P. J.;Winnacker, A.Mater. Sci. Eng. B 2001, 80, 357. doi: 10.1016/S0921-5107(00)00599-7
(22) Sebastian, P. J.; Matthews, N. R.; Mathew, X.; Pattabi, M.;Turner, J. Int. J. Hydrog. Energy 2001, 26, 123. doi: 10.1016/S0360-3199(00)00047-1
(23) Akikusa, J.; Khan, S. U. M. Int. J. Hydrog. Energy 2002, 27,863. doi: 10.1016/S0360-3199(01)00191-4
(24) Sayama, K.; Nomura, A.; Arai, T.; Sugita, T.; Abe, R.; Yanagida,M.; Oi, T.; Iwasaki, Y.; Abe, Y.; Sugihara, H. J. Phys. Chem. B2006, 110, 11352. doi: 10.1021/jp057539+
(25) Kanhere, P.; Zheng, J.W.; Chen, Z. Int. J. Hydrog. Energy 2012,37, 4889. doi: 10.1016/j.ijhydene.2011.12.056
(26) Li,W. Z.; Li, J.;Wang, X.; Chen, Q. Y. Appl. Surf. Sci. 2012,263, 157. doi: 10.1016/j.apsusc.2012.09.021
(27) Yuan,W. H.; Liu, X. C.; Li, L. Acta Phys. -Chim. Sin. 2013, 29,151. [袁文辉, 刘晓晨, 李莉. 物理化学学报, 2013, 29,151.] doi: 10.3866/PKU.WHXB201210093
(28) Sun, X. J.; Liu, H.; Dong, J. H.;Wei, J. Z.; Zhang, Y. Catal. Lett. 2010, 135, 219. doi: 10.1007/s10562-010-0302-7
(29) Husin, H.; Chen, H. M.; Su,W. N.; Pan, C. J.; Chuang,W. T.;Sheu, H. S.; Hwang, B. J. Appl. Catal. B-Environ. 2011, 102,343. doi: 10.1016/j.apcatb.2010.12.024
(30) Yan, S.; Huang, Q. D.; Lin, J. D.; Yuan, Y. Z.; Liao, D.W. Acta Phys. -Chim. Sin. 2011, 27, 2406. [闫石, 黄勤栋, 林敬东,袁友珠, 廖代伟. 物理化学学报, 2011, 27, 2406.] doi: 10.3866/PKU.WHXB20110929

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. Chim. Sin., 2017, 33(7): 1436-1445.
[2] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. Chim. Sin., 2017, 33(5): 869-885.
[3] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. Chim. Sin., 2017, 33(3): 590-601.
[4] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. Chim. Sin., 2017, 33(2): 399-406.
[5] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2542-2549.
[6] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2072-2081.
[7] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2082-2091.
[8] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2022-2028.
[9] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. Chim. Sin., 2017, 33(1): 149-164.
[10] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. Chim. Sin., 2017, 33(1): 80-102.
[11] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. Chim. Sin., 2016, 32(9): 2185-2196.
[12] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2069-2076.
[13] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. Chim. Sin., 2016, 32(8): 2077-2083.
[14] CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1556-1592.
[15] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1758-1764.